Corporate Banner
Satellite Banner
Cell Culture
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Evolutionary Molecule Identified by Researchers at University of Dundee

Published: Tuesday, August 07, 2012
Last Updated: Tuesday, August 07, 2012
Bookmark and Share
Scientists identified a molecule that could play a key role in how cells develop into the building blocks of life.

Developmental biologists try to understand how cells that are at first identical differentiate into the specialised cell types that make up tissues and organs.
 
Now researchers in the College of Life Sciences at Dundee, led by Professor Pauline Schaap, have identified a molecule called cyclic-di-GMP as being the `signal’ which can induce differentiation into stalk cells.
 
The Schaap laboratory studies a simple multicellular organism, Dictyostelium, in which motile cells (those which can move spontaneously) differentiate into two immobile cell types: stalk cells and spores.
 
In earlier research they showed that cyclic AMP induces the differentiation of spores. Now they have identified another molecule, cyclic-di-GMP, as the signal that induces the differentiation of stalk cells.
 
The new research is published in the journal Nature.
 
“Our work presents the opportunity to fully understand how cells learned to become different from each other in early multicellular organisms,” said Professor Schaap.
 
“These findings are also remarkable because cyclic-di-GMP was previously only found in bacteria, where it causes bacteria to lose motility and transform into large sticky colonies, known as biofilms. The fact that an organism like Dictyostelium, which is very far removed from bacteria, uses the same mechanism is very interesting and suggests that the processes which cause cell differentiation in eukaryotes, like ourselves, may have very deep evolutionary origins.”
 
The work has been funded by the Wellcome Trust and BBSRC, the Biotechnology and Biological Sciences Research Council.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Stem Cells in Drug Discovery
Potential Source of Unlimited Human Test Cells, but Roadblocks Remain.
Tissue Damage Is Key for Cell Reprogramming
Researchers have shown tissue damage is important for cells to return to an embryonic state for cell reprogramming.
Making Personalized Medicine a Reality
Groundbreaking technique developed at McMaster University is helping to pave the way for advances in personalized medicine.
Regenerating Diseased Hearts
Researchers from the University of Otago have probed the potential of adult stem cell types to repair diseased hearts.
Using Cancer Cells' Mass to Predict Treatment Response
A device has been developed that can detect changes in cell mass at a minute scale.
Color-Coded Stem Cells
Researchers develop colour-coding tool for tracking live blood stem cells over time.
Human Intestines and Functioning Nerves Engineered
The new technology enables the study of human health and advances the goal of regenerative medicine.
Chemical Snapshots Could Lead to Better Engineered Cartilage
Taking "chemical photographs" of the cartilage between joints and comparing it to engineered versions could lead to better implants, say researchers.
Peer Review is in Crisis, But Should be Fixed, Not Abolished
After the time to get the science done, peer review has become the slowest step in the process of sharing studies, and some scientists have had enough.
New Model of Lung Regeneration
Scientists have developed a tissue-engineered model of lung and trachea which contains the different cell types found in the repiratory system.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!