Corporate Banner
Satellite Banner
Cell Culture
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Nobel Prize Winner Yamanaka Remains at Forefront of Fast-Moving Stem Cell Field

Published: Friday, October 12, 2012
Last Updated: Friday, October 12, 2012
Bookmark and Share
Shinya Yamanaka, MD, PhD, named winner of the 2012 Nobel Prize for Physiology or Medicine, said he was doing some housecleaning when the call came in, and was “very surprised.”

But at UCSF, where Yamanaka joined the faculty in 2007, splitting his time between Kyoto University and the UCSF-affiliated Gladstone Institutes, his winning the Nobel Prize was considered virtually inevitable. The only surprise, colleagues say, was that the honor came so quickly.

Often the Nobel Committee waits decades before awarding the prize to make sure the discovery stands the test of time. It’s rare for a scientist’s influence on scientific thought and experimentation to spread as fast as it did in this case.

Yamanaka discovered keys to the developmental destiny of cells, and how these keys can be used to manipulate cell fate in ways that offer hope to scientists who seek new methods of providing tissues for organ transplantation and for other medical applications. His seminal paper was published in 2006, and there is an expectation that the techniques he developed will lead to clinical trials for macular degeneration as early as next year.

“It’s a great day for the Gladstone, and a great day for UCSF,” said Deepak Srivastava, MD, director of the Gladstone Institute of Cardiovascular Disease and a UCSF professor in the departments of pediatrics and biochemistry and biophysics.

“I’m a little surprised it happened this year,” Srivastava said. “I thought it would happen in the next five to 10 years.”

Even without considering the clinical potential, the implications of Yamanaka’s work for understanding basic biology are deserving of recognition, Srivastava said.

“The award is carefully worded,” he noted. “The fundamental, basic discovery that we can alter cell fates is really what this prize is about; it’s not so much about stem cells, or even about regenerative medicine. It’s about the discovery that we can control the fate of the cell by manipulating DNA without changing the genetic code.

“The ability to control cell fate, we hope, will allow us in the future to use the technology for regenerative medicine and disease modeling to drive discovery,” he said.

Srivastava — who himself is using strategies that stem from Yamanaka’s earlier discoveries to develop heart muscle from adult cells — is indeed optimistic about the medical possibilities. At a press briefing on Monday, he said he expected that Yamanaka’s conceptual advance within a couple of years will lead researchers to be able to convert a skin cell into virtually any other type of cell in the body. He forecast that in the next five to 10 years, the technology developed by Yamanaka will be leveraged in efforts to understand and better treat many human diseases.

Allan Basbaum, PhD, chair of the UCSF Department of Anatomy, where Yamanaka is a professor, said he also was surprised that Yamanaka won so quickly. However, Basbaum said, “he revolutionized a scientific field,” and to be named a Nobel laureate “that’s the way it should be.”

Yamanaka greatly advanced the field of stem cell research by developing a way to turn back the development of adult skin cells, making them more similar to embryonic stem cells in their potential to become any type of cell that populates tissues throughout the body.

Yamanaka accomplished this — first with mouse cells and later with human cells — by using just four molecules that control key genes in embryonic stem cells.

These induced pluripotent stem cells, or iPS cells, hold great promise for research. Pluripotency refers to the capacity of a cell to become nearly any type of cell in the body — a characteristic of the fertilized egg and of embryonic stem cells, but not one It was thought possible to coax from already mature cells.

Unlike embryonic stem cells, iPS cells can be developed using cells from adults who already have a disease. Already iPS cells are being reprogrammed in the lab to learn more about the development of human diseases, using human cells rather than animal cells and animal disease models.

In the development of cell therapies to regenerate tissue, iPS cells can be derived from the patient’s own tissue, allowing treatment to be better tailored to the individual patient.

The experiments that eventually succeeded for Yamanaka were simple and easily reproducible, which led to the methods he developed to be quickly adopted and built upon. Before Yamanaka, the ranks of those who sought to manipulate cell fate without changing the genetic code was smaller, and the field advanced more slowly.

Yamanaka said he was very inspired to pursue what others said was impossible in part by the work a half-century earlier by the scientist with whom he shares the Nobel Prize – John Gurdon, PhD, professor of cell biology at Cambridge University's Magdalene College and founder of the Gurdon Institute in Cambridge, England.

Development had always been viewed as a one-way street. As organisms develop, cells become increasingly specialized. That’s why it was a surprise when Gurdon in the 1950s showed that transferring the nucleus of an adult cell – complete with DNA and the encoded genetic program – into an egg could generate embryonic cells. He showed that the genetic program of an adult cell could be “reset” to its embryonic state. Gurdon first accomplished this working with frogs. This line of inquiry eventually led to the cloning of Dolly the Sheep in 1997.

Asked what he is working on now, Yamanaka said: “We have many projects, but I would say the most important project for us is to establish iPS cell stocks, or a bank.” In addition Yamanaka said, the Center for iPS Cell Research and Application in Kyoto where he works has a good manufacturing practice (GMP) facility. “We are hoping to establish the very first GMP-grade clinical cell lines by next year,” he said.

Despite the advances to date, Yamanaka said there are many details that must be learned about the biological mechanisms that guide the reprogramming of cells.

“We are doing our best, but there are still many unknowns,” he said. “It’s still right now a black box.”


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Growing Spinal Disc Tissue
Scientists develop new method for growing spinal disc tissue in the lab for combating chronic back pain.
Friday, July 03, 2015
May the Cellular Force be With You
Like tiny construction workers, cells sculpt embryonic tissues and organs in 3D space.
Friday, December 13, 2013
Understanding a Protein’s Role in Familial Alzheimer’s
Researchers have used genetic engineering of human iPSC’s to specifically and precisely parse the roles of a key mutated protein in causing familial Alzheimer's disease (AD).
Monday, November 18, 2013
Developmental Protein Plays Role in Spread of Cancer
A protein used by embryo cells during early development, and recently found in many different types of cancer, apparently serves as a switch regulating metastasis.
Tuesday, June 18, 2013
Well-known Protein Reveals New Tricks
A protein called "clathrin," which is found in every human cell and plays a critical role in transporting materials within them, also plays a key role in cell division.
Friday, September 07, 2012
Protein Build-up Leads to Neurons Misfiring
New evidence shows that alpha-synuclein protein build-up inside neurons causes them to not only become "leaky," but also to misfire due to calcium fluxes.
Friday, July 20, 2012
Scientific News
The Mending Tissue - Cellular Instructions for Tissue Repair
NUS-led collaborative study identifies universal mechanism that explains how tissue shape regulates physiological processes such as wound healing and embryo development.
Most Complete Human Brain Model to Date is a ‘Brain Changer’
Once licensed, model likely to accelerate study of Alzheimer’s, autism, more.
Capturing Cell Growth in 3-D
Spinout’s microfluidics device better models how cancer and other cells interact in the body.
Protein That Turns Moles Into Melanoma Cancer Identified
Moles can turn into cancer, if the genetic factors recently identified by a team of researchers at the University of Pennsylvania were not present in humans.
Scientists Grow Human Serotonin Neurons in Petri Dish
The advance could facilitate the discovery of new antidepressants and drugs for illnesses involving serotonin.
Study Details Powerful Molecular Promoter of Colon Cancers
Findings show how suppression of microRNA family of molecules leads to intestinal tumors.
From Pluripotency to Totipotency
Studies results provide new elements for the understanding of pluripotency and could increase the efficiency of reprogramming somatic cells to be used for applications in regenerative medicine.
Cancer Treatment Models get Real
Researchers at Rice Univ. and Univ. of Texas MD Anderson Cancer Center have developed a way to mimic the conditions under which cancer tumors grow in bones.
Potential Treatment for Muscular Dystrophy
A new method for producing muscle cells could offer a better model for studying muscle diseases, such as muscular dystrophy, and for testing potential treatment options.
Protein Related to Long Term Traumatic Brain Injury Complications Discovered
NIH-study shows protein found at higher levels in military members who have suffered multiple TBIs.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!