Corporate Banner
Satellite Banner
Cell Culture
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Thermo Scientific Expands Stem Cell Media Offerings

Published: Monday, June 17, 2013
Last Updated: Sunday, June 16, 2013
Bookmark and Share
Yields optimized stem cell growth and expansion per passage to accelerate research and discovery.

Thermo Fisher Scientific Inc. has introduced the Thermo Scientific HyClone HyCell-STEM and HyCell-STEM-FF stem cell culture media, designed to optimize the expansion rate of human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) per passage for cell culture applications including cell signaling, drug discovery and therapeutic research.

The new HyCell-STEM media solutions will be showcased this week at the 11th Annual International Society for Stem Cell Research (ISSCR) conference at the Boston Convention and Exhibition Center, Booth #637.

“There are exciting discoveries being made in the stem cell area today, and researchers demand the highest quality products to increase yields and integrity of their cell cultures,” said Roberta Morris, business director for Thermo Fisher Scientific.

Morris continued, “With the introduction of HyCell-STEM and HyCell-STEM-FF, we are offering researchers solutions that increase the rate of stem cell expansion while preserving cell morphology, stemness and pluripotency. Further, scientists may anticipate outstanding recovery after thaw, following cryopreservation of cells.”

HyCell-STEM is designed for use with stem cells on feeder layer cultures, and HyCell-STEM-FF is designed for stem cells in feeder-free conditions.

Both HyCell-STEM and HyCell-STEM-FF offer an increased expansion rate compared to market competitors based on internal testing, yielding as many as twice the cells on every passage.

HyCell-STEM and HyCell-STEM-FF require no adaptation and hESCs and iPSCs can be thawed or seeded directly into the systems. Additionally, robust hESCs and iPSCs grown in HyCell-STEM do not have to be fed daily, saving time, resources and weekend demands for researchers.

For feeder-free culturing with the HyCell-STEM FF, the need of feeder cells is eliminated entirely, and stem cell culture preparation is simplified. Other key features and benefits of the HyCell-STEM and HyCell-STEM-FF systems include:

• Optimized expansion rate of human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) per passage
• Healthy stem cell morphology demonstrated by tight clustering and smooth borders of cultured cells
• Preservation of stemness and pluripotency over multiple passages
• Superior post-thaw recovery of stem cells from cryopreservation with cells thawed directly in HyCell-STEM or HyCell-STEM-FF yielding more cells faster


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Genetic Variability in Cell Bank Lots
Researchers working with cancer cells from the same cell bank acquired at the same time, found that the cells were genetically different.
3D Models May Yield Ovarian Cancer Insights
Researchers are developing new tools to decipher ovarian cancer developments through a 3D printing technology.
A Novel Cell Culture Model For Forensic Biology Experiments
Researchers have developed a new cell culture model which provides an efficient research tool in forensic biology.
Mapping Zika’s Routes to Developing Fetus
UC researchers show how Zika virus travels from a pregnant woman to her fetus, and also identified a drug that could stop it.
3D Printing Cartilage
3D bioprinting has successfully manufactured cartilage using bioink sourced from cow cartilage strands.
New Device can Study Electric Field Cancer Therapy
Microfluidic device allows study of electric field cancer therapy through low-intensity fields, preventing malignant cells spreading.
Scientists Culture Elusive Yellowstone Microbe
ORNL scientists have successfully isolated and cultured a Yellowstone sourced acidic hot-spring based microbe.
A 3D Paper-Based Microbial Fuel Cell
Researchers have developed a proof-of-concept 3D paper-based microbial fuel cell (MFC) that could take advantage of capillary action to guide the liquids through the MFC system and to eliminate the need for external power.
Just Gellin’: How To Grow Strong Muscles-On-A-Chip
USC researchers hope to usher in new treatments for patients with muscular dystrophy.
Lasers Carve the Path to Tissue Engineering
A new technique, developed at EPFL, combines microfluidics and lasers to guide cells in 3D space, overcoming major limitations to tissue engineering.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!