Corporate Banner
Satellite Banner
Cell Culture
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Asylum Research Introduces Contact Resonance Viscoelastic Mapping Mode

Published: Monday, September 16, 2013
Last Updated: Monday, September 16, 2013
Bookmark and Share
Quantitative nanomechanical imaging of both elastic and loss moduli.

Asylum Research has announced Contact Resonance Viscoelastic Mapping Mode, an option available exclusively for Asylum’s Cypher™ and MFP-3D™ Atomic Force Microscopes (AFMs).

Contact Resonance (CR) enables high resolution, quantitative imaging of both elastic storage modulus and viscoelastic loss modulus.

The technique is particularly well suited for characterizing moderate to high modulus materials in the range of about 1GPa to 200GPA for materials such as composites, thin films, biomaterials, polymer blends, and even ceramics and metals.

Exclusive Asylum hardware and software developments have made contact resonance imaging significantly faster, more quantitative, simpler to use, and applicable to a wider range of materials.

“Contact resonance techniques were first developed in the 90s, though until now, only as lab-built implementations. Asylum Research recognized the potential of this technology and focused our resources to provide this capability to our customers,” said Ben Ohler, AFM Business Manager at Asylum Research.

Ohler continued, “With help from industry-leading collaborators, we dramatically improved its speed, ease of use, and quantitative capabilities. The result of that work is Contact Resonance Viscoelastic Mapping Mode, the very first commercial offering of this technology.”

“An important feature of contact resonance imaging is that it characterizes the full viscoelastic response of materials,” noted Roger Proksch, President and co-founder of Asylum Research. “Some other nanomechanical imaging techniques only measure the elastic modulus of materials and have no capability to measure the loss modulus. However, both the elastic and dissipative response is critical to the performance of many modern materials. Contact Resonance Viscoelastic Mapping Mode provides a more complete picture which should enable more accurate and more useful insights into how nanomechanical properties influence real-world applications of these materials.”

A number of exclusive Asylum Research technologies enable the superior performance of Contact Resonance Viscoelastic Mapping Mode.

Highly damped cantilever and sample actuators were developed for both the MFP-3D and Cypher AFMs to provide exceptionally clean, wideband excitation that makes operation far more robust and accurate.

Dual AC™ Resonance Tracking (DART) and Band Excitation electronics make it possible to rapidly measure both the contact resonance frequency and quality factor, providing measures of both the elastic and viscous responses at higher speeds.

Finally, exclusive software enables users to select the most appropriate analysis models and easily guides them through the steps required to calibrate the technique.

The contact resonance packages are available for both new MFP-3D and Cypher S AFM systems and as upgrades to existing systems.

Contact Resonance Viscoelastic Mapping Mode is just one tool in the Asylum Research NanomechPro™ Toolkit, which includes many techniques for characterizing material properties at the nanoscale.

Asylum believes that there’s not just one, best, “one-size-fits-all” approach to nanomechanics.

Comparing the results from multiple techniques adds considerable confidence to the measurements and can provide new additional information.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Asylum Announces Ben Ohler as AFM Business Manager
Ohler will oversee the Company’s MFP-3D family of products.
Thursday, May 30, 2013
Asylum Research Appoints Amir Moshar
Company appoints Amir to west coast US technical sales.
Friday, March 29, 2013
Scientific News
Detecting Minute Nano Amounts In Environmental Samples
The NanoUmwelt project is developing a technique that can detect nanomaterials in a variety of environmental samples.
Shape Of Tumor May Affect Whether Cells Can Metastasize
Illinois researchers found that the shape of a tumor may play a role in how cancer cells become primed to spread.
‘Mini-Brains’ to Study Zika
Novel tool expected to speed research on brain and drug development.
Cytokine Triggers Immune Response at Expense of Blood Renewal
Research highlights promise of Anti-IL-1 drugs to treat chronic inflammatory disease.
Micro Heart Muscle Created from Stem Cells
Researchers have designed a new way to create micro heart muscle from stem cells using a unique dog bone dish.
“Secret Sauce” for Personalized, Functional Insulin-producing Cells
Researchers uncover molecular switch to make effective sugar-responsive, insulin-releasing cells in a dish, offering hope for diabetes therapy.
Insights into Early Human Embryo Development
Researchers at Karolinska Institutet and the Ludwig Cancer Research in Stockholm have conducted a detailed molecular analysis of the embryo’s first week of development.
Boosting Gene Transfer Capabilities
A new and highly efficient method for gene transfer has been developed.
Liver-On-Chip Tracks Dynamics of Cellular Function
Hebrew University’s liver-on-chip platform is uniquely able to monitor metabolic changes indicating mitochondrial damage occurring at drug concentrations previously regarded as safe.
EU Project Aims to Cure Type 1 Diabetes
Researchers develop organoids from insulin-producing cells for transplantation.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!