Corporate Banner
Satellite Banner
Cell Culture
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

JPK Reports on the Study of Structure and Dynamics of Biological Membranes

Published: Tuesday, October 15, 2013
Last Updated: Tuesday, October 15, 2013
Bookmark and Share
JPK Instruments reports on how AFM and advanced fluorescence microscopy is being applied in the study of biological membranes in the Centre de Biochimie Structurale.

The CBS includes a research group focused on single molecule physics. Dr Pierre-Emmanuel Milhiet runs a team which applies AFM and advanced fluorescence microscopies (single molecule tracking and single-molecule localization microscopy or SMLM) in the study of both structure and dynamics of biological membranes.

Speaking about his work, Dr Milhiet says "One of our aims is to decipher the molecular mechanisms involved in the lateral segregation of membrane components using artificial bilayers and intact cell membranes. Part of our activities is also to develop new methodologies and we have recently mounted a new setup combining a JPK AFM and home-made SMLM (especially PALM and STORM). The main motivation came from the fact that the lateral resolution that can be achieved with an AFM on intact cells is in the same range than that obtained by SMLM (a few tens of nanometers), making possible the precise identification of structures imaged by the tip. We are also involved in the development of high-speed AFM for imaging biological membranes as part of a collaborative effort with Professor Toshio Ando's group in Japan."

His team uses AFM because it is an outstanding tool to investigate membrane topography. Because of its vertical and lateral resolution, structure of membrane assemblies can be observed and single molecule (protein or DNA) can be delineated by the tip. The possibility to work in liquid is another tremendous advantage as compared to other structural biology techniques.

Dr Milhiet selected the JPK system because "It is a very stable machine for a stand-alone AFM allowing single protein resolution to be achieved on biological membranes. The HyperDrive™ mode is especially suitable for this purpose. Also, JPK's Tip-Assisted Optics stage can be combined with tip scanning which is very useful for compensating the drift of the sample stage which may be observed during long-term SMLM acquisition. Combining single molecule fluorescence microscopies with AFM is important as it enables us to understand that the integration of multiple methodologies over multiple length- and time-scales, from molecular to cellular levels, is necessary to tackle complex biological questions."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Stem Cells Growing 3D Lung-in-a-Dish
Researchers have created 3D lung-like tissue from lung-derived stem cells. The tissue can be used to study lung diseases.
Reprogramming Lymph Nodes to Fight MS
Bioengineers work to reprogram lymph node function to fight multiple sclerosis.
Puttng Cells Through Their Paces
An obstacle course for human lung cells could be the answer for better testing the effectiveness of potential new drugs.
Inherited Heart Condition Breakthrough
Using stem cells, scientists have created a specific heart condition model, yeilding insights into unexpected disease mechanisms.
Genetic Tug of War Before Cells Decide Fate
Researchers report that as developing blood cells are triggered by genetic signals firing on and off, a 'tug of war' occurs.
Origin of Cultured Cells: Not Where You Think
Study shows cultured cells from decades-old cell line does not originate from the patient it was claimed to derive from.
Worms Point Way Toward Viral Strategies
Rice University wins NIH grant to study how nematodes handle gastrointestinal viruses.
Hope for Zika Treatment Found in Drug Screening
Johns Hopkins researchers join collaborative group to screen 6,000 existing drugs in hopes of finding treatments for Zika Virus infection.
Adoption of Three Dimensional Culture Models May Save Lives
Physiologically relevant cell models can detect chronic hepatotoxicity early in the drug discovery process.
Growing Noroviruses in the Lab
Human noroviruses – the leading viral cause of acute diarrhea around the world – have been difficult to study because scientists had not found a way to grow them in the lab.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!