Corporate Banner
Satellite Banner
Cell Culture
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

New Method for Microcarrier Cell Culture using TAP’s ambr Micro Bioreactors

Published: Thursday, October 31, 2013
Last Updated: Thursday, October 31, 2013
Bookmark and Share
Saves time optimizing process conditions enabling rapid vaccine production.

TAP Biosystems has announced that it has developed a new method of using microcarriers with its ambr™ micro bioreactor system.

This technique enables scientists to produce uniform microcarrier samples and perform automated media exchange to rapidly optimize parameters for culturing adherent cell lines on microcarriers, thus shortening timelines for successfully scaling up manufacturing of vaccines and cell therapies.

Scientists at TAP have utilized the ambr workstation to develop an automated method for providing highly consistent dispensing of microcarriers to multiple 10-15mL ambr microbioreactors.

This means scientists can then rapidly test up to 24 cell-specific culture parameters in parallel including stirring, media formulation or feed strategies to determine the optimum conditions for cell attachment, growth rate and vaccine titre, for example.

The new method, which has been developed using Vero adherent cells attached to Cytodex® 1 microcarriers, allows a 20% media exchange to be performed at any time of the day or night on 24 ambr vessels in approximately 4h.

Since the method allows even microcarrier distribution, scientists can then study up to 24 different parameters in parallel, simultaneously.

This reduces reliance on spinner flasks and bench top bioreactors, saving vaccine and cell therapy manufacturers many months of scale-up process development work.

The method and results of the study are available in a technical application note, which can be requested via the link: http://www.tapbiosystems.com/ambr_microvacc/technoterequest_corporate.asp
Dr Barney Zoro, ambr Product Manager at TAP Biosystems stated: "There is a great deal of interest in developing vaccines using attachment dependent Vero cells and microcarriers as they allow cell propagation in bioreactors rather than roller bottles. The use of bioreactors can provide greater process control, resulting in high-titre vaccine production. However, the main issue is how to accurately mimic bioreactor conditions as producing evenly distributed microcarriers and performing media exchange can be problematic using spinner flasks and benchtop bioreactors. Our new method for microcarrier culture using the ambr system means scientists can begin their experiments with uniform microcarrier samples and perform media exchange without interruption of stirring.”

Zoro added: “Being able to assess different parameters, as well as perform process development in weeks rather than months when using ambr will save scientists valuable time, enabling them to rapidly scale up an optimum cell culture process for more affordable vaccines or as a quick response to unexpected situations such as a pandemic threat.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Merck and TAP Biosystems Finalists for “Best Collaboration Award”
Recognizing ambr250 as a breakthrough technology for process development.
Wednesday, October 08, 2014
TAP and Gallus Co-host Free Webinar
Explaining the benefits of using ambr15 microbioreactors for DoE.
Wednesday, October 01, 2014
New Webinars Explore Feed Strategy Challenges Using Mini Bioreactors
Detailing how to achieve consistent feeding regimes for reproducible scale-up.
Thursday, September 25, 2014
New Webinar on Mimicking Perfusion Culture Using Micro Bioreactors
Presents validation data for improving media screening and process optimization.
Friday, February 14, 2014
TAP Biosystems Presents New Data on 3D Cell Culture Research
Discussing the application of RAFT 3D models in oncology, toxicology and neuroscience cell-based screening programmes.
Monday, January 20, 2014
Collaboration between TAP Biosystems and UCL to Develop Biomimetic 3D Cancer Models
TAP Biosystems announced new collaboration to develop solid tumour tissue models using its RAFT 3D cell culture system for use in drug discovery applications.
Friday, October 12, 2012
Scientific News
Emerging Model of Cancer
Cancer acts cooperatively, making individual decisions but acting in unison; this insight is being used to create a computer model of cancer.
Characterizing the Mouse Gut Microbiome
Study establishes the first public collection of bacteria from the intestine of mice.
How Cloud Connectivity Can Combat the Reproducibility Crisis
This infographic explains the reproducibility crisis, and how cloud connectivity can help overcome this problem.
Stem Cells Grown On Scaffold Mimic Hip Joint Cartilage
Adult fat-derived stem cells grown on a 3-D scaffold that mimicked a hip joint surface formed cartilage and maintained the correct shape.
'Fixing' Blood Vessel Cells To Diagnose Blood Clotting Disorders
A novel microfluidic device detects how endothelial cells that line vessels contribute to hemostasis.
Using Animal Embryos Containing Human Cells
With recent advances in stem cell and gene editing technologies, an increasing number of researchers are interested in growing human tissues and organs in animals by introducing pluripotent human cells into early animal embryos.
Engineering Cells to Speed Tissue Repair
Kelly Schultz studies how cells remodel their microenvironment - a crucial step toward engineering cells to move through synthetic material for faster tissue regeneration.
Cancer Cells Migrate Towards Oxygen
Bioengineers report results showing sarcoma cells in mice finding pathways toward higher concentrations of oxygen
Biopharmaceuticals on Demand
Portable production system would use microbes for manufacturing small amounts of vaccines and therapeutics.
Singapore Scientists Grow Mini Human Brains
Mini midbrains provide next generation platforms to investigate human brain biology, diseases and therapeutics
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!