Corporate Banner
Satellite Banner
Cell Culture
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Light at the Ends of the Tunnel

Published: Wednesday, December 11, 2013
Last Updated: Wednesday, December 11, 2013
Bookmark and Share
Illuminating the structure of the human nuclear pore complex.

Imagine a tunnel the width of a car, which could expand to grant passage to trucks, and bend when earthquakes shook the ground around it. To find such a tunnel, you need look no further than your own body: there are thousands in each of your cells. Called nuclear pore complexes, these tunnels control traffic in and out of the cell’s nucleus. When scientists in the Beck group at EMBL Heidelberg determined what one of the nuclear pore’s main building blocks – Nup107 – looks like and how it is arranged, they found clues to the tunnel’s flexibility.

“The nuclear pore complex always looks like a perfect ring in the pictures, but in practice we know that it’s not – it’s very floppy,” says Martin Beck. “We found that Nup107 has four hinges where it can bend, to allow this floppiness. There might be two biological reasons for this: it might prevent the pore from breaking if the nuclear membrane is pulled or distorted, and it could also allow the pore to expand a bit to transport very large cargoes.”

Nup107 is shaped like a Y, and scientists at EMBL and elsewhere had been amassing evidence that 8 copies of this Y-shaped piece line up head-to-tail to form the nuclear pore’s ring shape. Khanh Huy Bui and Alexander von Appen, both in the Beck group, discovered that this is not a simple head-to-tail chain. Working with visiting PhD student Amanda DiGuilio, they found that the ring is formed by pairs of pieces, like a chain of tandem bicycles. Eight of these pairs form a ring at either end of the nuclear pore tunnel. This puts the definitive number of Nup107 copies in the nuclear pore at 32, in agreement with a study published earlier this year in which the Beck, Lemke and Bork groups calculated how many copies of each piece make up the nuclear pore.

Once assembled – and unlike most man-made tunnels – nuclear pores are not left permanently in place. They have to be dismantled – along with the membrane they sit in – for our cells to divide. Scientists knew that this disassembly is accomplished by adding phosphate tags to the nuclear pore, and the EMBL researchers have now found that those tags are inserted at the points where the Y-shaped pieces attach to each other, effectively prising apart the tunnel’s building blocks.

In the current study, published recently in Cell, Beck and colleagues used single particle electron microscopy and mass spectrometry to figure out how the molecules within each Y are arranged, and how the Ys connect to each other. They then fitted those pieces into the overall image of the whole ring, which they obtained through electron tomography.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Benchtop Automation Trends
Gain a better understanding of current interest in and future deployment of benchtop automated systems.
How Cancer Spreads in the Body
Cancer cells appear to depend on an unusual survival mechanism to spread around the body, according to an early study led by Queen Mary University of London.
Tumor Cells Develop Predictable Characteristics
Scientists have discovered that cancer cells at the edge of a tumor that are close to the surrounding environment are predictably different from the cells within the interior of the tumor.
What Makes a Good Scientist?
It’s the journey, not just the destination that counts as a scientist when conducting research.
How Prions Kill Neurons: New Culture System Shows Early Toxicity to Dendritic Spines
Boston University researchers have developed a cell culture system to study prions.
A Boost for Regenerative Medicine
Growing tissues and organs in the lab for transplantation into patients could become easier after scientists discovered an effective way to produce three-dimensional networks of blood vessels, vital for tissue survival yet a current stumbling block in regenerative medicine.
Bio-Mimicry Method For Preparing & Labeling Stem Cells Developed
Method allows researchers to prepare mesenchymal stem cells and monitor them using MRI.
Stem Cell Advance Could Be Key Step Toward Treating Deadly Blood Diseases
UCLA scientists get closer to creating blood stem cells in the lab.
Harnessing Engineered Slippery Surfaces For Tissue Repair
A new method could facilitate the transfer of intact regenerating cell sheets from the culture dish to damaged tissues in patients.
The Rise of 3D Cell Culture and in vitro Model Systems for Drug Discovery and Toxicology
An overview of the current technology and the challenges and benefits over 2D cell culture models plus some of the latest advances relating to human health research.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!