Corporate Banner
Satellite Banner
Cell Culture
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Light at the Ends of the Tunnel

Published: Wednesday, December 11, 2013
Last Updated: Wednesday, December 11, 2013
Bookmark and Share
Illuminating the structure of the human nuclear pore complex.

Imagine a tunnel the width of a car, which could expand to grant passage to trucks, and bend when earthquakes shook the ground around it. To find such a tunnel, you need look no further than your own body: there are thousands in each of your cells. Called nuclear pore complexes, these tunnels control traffic in and out of the cell’s nucleus. When scientists in the Beck group at EMBL Heidelberg determined what one of the nuclear pore’s main building blocks – Nup107 – looks like and how it is arranged, they found clues to the tunnel’s flexibility.

“The nuclear pore complex always looks like a perfect ring in the pictures, but in practice we know that it’s not – it’s very floppy,” says Martin Beck. “We found that Nup107 has four hinges where it can bend, to allow this floppiness. There might be two biological reasons for this: it might prevent the pore from breaking if the nuclear membrane is pulled or distorted, and it could also allow the pore to expand a bit to transport very large cargoes.”

Nup107 is shaped like a Y, and scientists at EMBL and elsewhere had been amassing evidence that 8 copies of this Y-shaped piece line up head-to-tail to form the nuclear pore’s ring shape. Khanh Huy Bui and Alexander von Appen, both in the Beck group, discovered that this is not a simple head-to-tail chain. Working with visiting PhD student Amanda DiGuilio, they found that the ring is formed by pairs of pieces, like a chain of tandem bicycles. Eight of these pairs form a ring at either end of the nuclear pore tunnel. This puts the definitive number of Nup107 copies in the nuclear pore at 32, in agreement with a study published earlier this year in which the Beck, Lemke and Bork groups calculated how many copies of each piece make up the nuclear pore.

Once assembled – and unlike most man-made tunnels – nuclear pores are not left permanently in place. They have to be dismantled – along with the membrane they sit in – for our cells to divide. Scientists knew that this disassembly is accomplished by adding phosphate tags to the nuclear pore, and the EMBL researchers have now found that those tags are inserted at the points where the Y-shaped pieces attach to each other, effectively prising apart the tunnel’s building blocks.

In the current study, published recently in Cell, Beck and colleagues used single particle electron microscopy and mass spectrometry to figure out how the molecules within each Y are arranged, and how the Ys connect to each other. They then fitted those pieces into the overall image of the whole ring, which they obtained through electron tomography.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Mitochondria Shown to Trigger Cell Ageing
An international team of scientists has for the first time shown that mitochondria, the batteries of the cells, are essential for ageing.
Cancer Cells Kill Off Healthy Neighbours
Cancer cells create space to grow by killing off surrounding healthy cells, according to UK researchers working with fruit flies.
Editing of Embryos Approved in the UK
The Human Fertilisation and Embryology Authority (HFEA) has approved a research application from the Francis Crick Institute to use new "gene editing" techniques on human embryos.
Microbes Take Their Vitamins
Scientists exploit organisms' needs in order to track 'vitamin mimics' in bacteria.
Machine Learning Uncovers Unknown Bacterial Features
Technique robustly identified characteristic gene expression patterns in response to antibiotics, low oxygen conditions.
CRISPR-Cas9 Gene Editing Advances Again
UC Berkeley researchers have made a major improvement in CRISPR-Cas9 technology that achieves an unprecedented success rate of 60 percent when replacing a short stretch of DNA with another.
Disrupting Cell’s Supply Chain Freezes Cancer Virus
When the cancer-causing Epstein-Barr virus moves into a B-cell of the human immune system, it tricks the cell into rapidly making more copies of itself, each of which will carry the virus.
Why Do Some Infections Persist?
In preparing for the possibility of an antibiotic onslaught, some bacterial cultures adopt an all-for-one/one-for-all strategy that would make a socialist proud, University of Vermont researchers have found.
ASCB: A CELLebration of Cell Biology
The last major congress of the year, ASCB is less a platform for launching new products, but one for confirming and consolidating the trends that have emerged over the past 12 months.
Squeezing Cells into Stem Cells
EPFL scientists have developed a new method that helps cells turn in usable stem cells. The new approach involves “squeezing” cells with a gel, and paves the way for large-scale production of stem cells for medical purposes.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!