Corporate Banner
Satellite Banner
Cell Culture
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

What Fuels Salmonella’s Invasion Strategy?

Published: Thursday, May 08, 2014
Last Updated: Tuesday, May 13, 2014
Bookmark and Share
As well as reducing the effects Salmonella can have we also need more effective ways to combat it once it's inside our bodies.

Certain strains of Salmonella bacteria such as Salmonella Typhimurium (S. Typhimurium) are among of the most common causes of food-borne gastroenteritis. Other strains of Salmonella such as S. Typhi are responsible for typhoid fever, which causes 200,000 deaths around the world each year. Ensuring food is clear of contamination, and water is clean are key to reducing the effects Salmonella can have, but we also need more effective ways to combat Salmonella once it's inside our bodies.

To address this the Institute of Food Research, strategically supported by BBSRC has been studying S.Typhimuriumbacteria to understand, not only how they transmit through the food chain, but why they are so effective and dangerous once inside us.

If we consume food or water contaminated with S. Typhimurium, the first stage of infection is to get into the cells that line our gut. These epithelial cells are adapted to defend against such attacks, but Salmonella has a wealth of strategies to overcome these and make it more virulent. It also needs these virulence genes to overcome the cells of the immune system, which it invades to move around the body. We are learning a lot about these virulence genes, but until this new study, published in the journal PLOS ONE, we didn't know how Salmonella fuelled itself for this. A source of energy and nutrition is vital, and knowing what Salmonella uses could inform new strategies to prevent infection.

To discover more about Salmonella's feeding habits, Dr Arthur Thompson and his team constructed S. Typhimurium strains lacking certain key genes in important metabolic pathways. They then examined how well these mutated strains reproduced in human epithelial cells, grown in cultures.

"We found that glucose is the major nutrient used by S.Typhimurium," said Dr Thompson. Salmonella converts glucose to pyruvate in a process called glycolysis, which also releases energy needed to fuel growth and reproduction. Knocking out one enzyme in glycolysis, and enzymes used to transport glucose into the bacteria severely reduced S. Typhimurium's ability to reproduce in epithelial cells, but didn't eradicate it completely. "This suggests that although S. Typhimurium requires glucose, it is also able to use other nutrients, and that's something we're now studying," said Dr Thompson.

This contrasts with previous findings from similar experiments on macrophage cells by the IFR team, as for successful macrophage invasion, glycolysis is absolutely essential. Macrophages are the immune cells sent to destroy Salmonella, but instead Salmonella invades the macrophages. Infected macrophages can carry Salmonella around the body causing a potentially fatal systemic infection.

"We now have a much more complete picture of the nutritional needs of Salmonella, which is important since this information may also suggest new ways to develop potential therapeutic interventions," said Dr Thompson.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
The Mending Tissue - Cellular Instructions for Tissue Repair
NUS-led collaborative study identifies universal mechanism that explains how tissue shape regulates physiological processes such as wound healing and embryo development.
Most Complete Human Brain Model to Date is a ‘Brain Changer’
Once licensed, model likely to accelerate study of Alzheimer’s, autism, more.
Capturing Cell Growth in 3-D
Spinout’s microfluidics device better models how cancer and other cells interact in the body.
Protein That Turns Moles Into Melanoma Cancer Identified
Moles can turn into cancer, if the genetic factors recently identified by a team of researchers at the University of Pennsylvania were not present in humans.
Scientists Grow Human Serotonin Neurons in Petri Dish
The advance could facilitate the discovery of new antidepressants and drugs for illnesses involving serotonin.
Study Details Powerful Molecular Promoter of Colon Cancers
Findings show how suppression of microRNA family of molecules leads to intestinal tumors.
From Pluripotency to Totipotency
Studies results provide new elements for the understanding of pluripotency and could increase the efficiency of reprogramming somatic cells to be used for applications in regenerative medicine.
Cancer Treatment Models get Real
Researchers at Rice Univ. and Univ. of Texas MD Anderson Cancer Center have developed a way to mimic the conditions under which cancer tumors grow in bones.
Potential Treatment for Muscular Dystrophy
A new method for producing muscle cells could offer a better model for studying muscle diseases, such as muscular dystrophy, and for testing potential treatment options.
Protein Related to Long Term Traumatic Brain Injury Complications Discovered
NIH-study shows protein found at higher levels in military members who have suffered multiple TBIs.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!