Corporate Banner
Satellite Banner
Cell Culture
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Bruker Awarded Fourth PeakForce Tapping Patent

Published: Thursday, July 24, 2014
Last Updated: Thursday, July 24, 2014
Bookmark and Share
AFM mode uniquely combines highest resolution imaging and material property mapping.

Bruker has announced that it has recently been awarded its fourth patent for PeakForce Tapping®, its proprietary atomic force microscopy mode that uniquely provides a combination of the highest resolution AFM imaging with the most quantitative property mapping data possible. The patent is issued for the PeakForce Tapping’s specific method of achieving piconewton level, direct force control.

PeakForce Tapping comprises a series of patents that started with the novel concept of high-speed mechanical property mapping (US patent 7,658,097) and evolved into a family of unique AFM modes that include ScanAsyst® (US patent 8,650,660), PeakForce QNM® (US patent 8,646,109) and the recently issued PeakForce Tapping control (US patent 8,739,309).

This series of patented offerings have enabled researchers of all AFM experience levels to perform atomic force microscopy imaging with unprecedented precision in force control and access physical properties information at the nanometer scale for broader category of materials. Additionally, PeakForce Tapping has been extended to electrical AFM modes, such as PeakForce TUNA™ and PeakForce KPFM™.

“As PeakForce Tapping maps the surface, we use feedback to keep the peak interaction force constant, down to tens of piconewtons, in both air and fluid. Because of this simplicity and direct force control, we can preserve the tip as sharp as a few nanometers, which gives us consistent high resolution, including resolving individual atoms,” explained Dr. Chanmin Su, PeakForce Tapping co-inventor and Senior Director of Technology of Bruker’s AFM Business. “Direct force control at pN level and ability to maintain performance for broad range of samples enable users to acquire high-quality images easily, even on complicated samples as multi-component polymers, biomolecules and cells. At the same time the technology provides rich, high-resolution quantitative nanomechanical and nano-electrical data.”

“This latest patent for PeakForce Tapping adds to the rapidly growing list of PeakForce Tapping technology advances that are empowering our customers’ AFM work in both materials and life sciences research,” added David V. Rossi, Executive Vice President and General Manager of Bruker's AFM Business. “With its ability to achieve the highest resolution imaging while providing quantitative property mapping on whatever you measure, PeakForce Tapping continues to fulfill the full promise of how AFMs can enable the highest level of scientific research. This is supported by the fact that PeakForce Tapping has led to over 700 peer-reviewed publications since its inception. We are very pleased that we have been able to bring this unique technology to the scientific community while also removing some of the traditional barriers associated with atomic force microscopy.”


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Bruker Announces Acquisition of Prairie Technologies
Acquisition strengthens Bruker Nano Surfaces Division's position in life science markets.
Friday, September 13, 2013
Scientific News
DNA Damage Seen in Patients Undergoing CT Scanning
Along with the burgeoning use of advanced medical imaging tests over the past decade have come rising public health concerns about possible links between low-dose radiation and cancer.
Yeast Cells Use Signaling Pathway to Modify Their Genomes
Researchers at the Babraham Institute and Cambridge Systems Biology Centre, University of Cambridge have shown that yeast can modify their genomes to take advantage of an excess of calories in the environment and attain optimal growth.
New Material Forges the Way for 'Stem Cell Factories'
Researchers have discovered the first fully synthetic substrate with potential to grow billions of stem cells. The researchcould forge the way for the creation of 'stem cell factories' - the mass production of human embryonic (pluripotent) stem cells.
New Measurements Reveal Differences Between Stem Cells for Treating Retinal Degeneration
By growing two types of stem cells in a “3-D culture” and measuring their ability to produce retinal cells, a team lead by St. Jude Children’s Research Hospital researchers has found one cell type to be better at producing retinal cells.
Researchers Identify Critical Genes Responsible for Brain Tumor Growth
After generating new brain tumor models scientists have identified the role of a family of genes underlying tumor growth in a wide spectrum of high grade brain tumors.
Growing Spinal Disc Tissue
Scientists develop new method for growing spinal disc tissue in the lab for combating chronic back pain.
A New Path Towards a Universal Flu Vaccine
New research suggests it may be possible to harness a previously unknown mechanism within the immune system to create more effective and efficient vaccines against this ever-mutating virus.
Potential New Class of Cancer Drugs
Scientists have found a way to stop cancer cell growth by targeting the Warburg Effect, a trait of cancer cell metabolism that scientists have been eager to exploit.
Human Trials of Manufactured Blood Within Two Years
The first human trials of lab-produced blood to help create better-matched blood for patients with complex blood conditions has been announced by NHS Blood and Transplant.
How Anthrax Spores Grow in Cultured Human Tissues
New findings to help predict risk and outcomes of anthrax attacks.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!