Corporate Banner
Satellite Banner
Cell Culture
Scientific Community
 
Become a Member | Sign in
Home>Videos>This Video
  Videos

Return

CellKey 384 Label-Free Cellular Analysis System
Molecular Devices

The CellKey® 384 System is a universal, high throughput label-free platform for real-time cell-based functional analysis of endogenous and recombinant receptors. The system enables the measurement of a wide range of targets in a single-assay, including all families of G-protein coupled receptors (GPCRs), as well as tyrosine kinase receptors (TKRs), adhesion molecules, and indirect measurement of ion channel activation. In particular, the system is a major breakthrough for accurate monitoring of Gαi- and Gαs-coupled GPCR receptors, as it overcomes many of the challenges and limitations found with the traditionally available assay formats. The underlying technology of the system is cellular dielectric spectroscopy (CDS), an impedance based measurement that eliminates the need for labels, such as tags, dyes, or specialized reagents. By eliminating the requirement for labels, the CellKey System streamlines assay development by reducing the number of steps to be optimized, and allows users to develop one standard assay solution for multiple target classes, regardless of pathway. The 384-well format increases throughput and enables up to 25,000 samples to be acquired per 8 hour day. The higher density microplate format reduces the per well assay costs by reducing the cells/well and reagents requirements. Additionally, the CellKey 384 System includes a tip wash system, which extends unattended operation. The system was designed to meet the needs of drug discovery scientists-- from target identification and validation through lead optimization. It is sensitive enough to monitor ligand-mediated activation of endogenous receptors expressed in adherent or non-adherent cell lines, including primary cells. The benefit of this is the ability to generate more physiologically relevant data than obtained when using genetically and chemically manipulated cells. While traditional technologies measure only discrete intracellular events, such as Ca2+ flux or cAMP fluctuation, the CellKey System measures the integrated response of the whole cell to receptor activation. By presenting a more complete picture of the complex pathways activated, scientists gain a better understanding of the cellular response. For example, upon detecting GPCR activation, the CellKey System generates robust and reproducible response profiles that are characteristic of Gαs-, Gαi- or Gαq- GPCRs. This qualitative data can be used to identify and deconvolute the pathway(s) through which receptors transduce their signals, and enables detailed interpretation of the mechanism of action (MOA) of lead compounds. The CellKey 384 System is a fully integrated solution consisting of the instrument with on-board temperature control and internally integrated fluidics, a custom microplate for detection, and an extensive software suite. The integrated pipettor head allows the system to add ligand while simultaneously capturing the immediate cellular response. This feature contributes to the robustness and reproducibility of the CellKey System response profiles. The system software manages both data acquisition and the information-rich, real-time kinetic data analysis. Additionally, the system has been designed to integrate with most available automation options.

Request more information
Company product page

Scientific News
A Novel Cell Culture Model For Forensic Biology Experiments
Researchers have developed a new cell culture model which provides an efficient research tool in forensic biology.
Mapping Zika’s Routes to Developing Fetus
UC researchers show how Zika virus travels from a pregnant woman to her fetus, and also identified a drug that could stop it.
3D Printing Cartilage
3D bioprinting has successfully manufactured cartilage using bioink sourced from cow cartilage strands.
New Device can Study Electric Field Cancer Therapy
Microfluidic device allows study of electric field cancer therapy through low-intensity fields, preventing malignant cells spreading.
Scientists Culture Elusive Yellowstone Microbe
ORNL scientists have successfully isolated and cultured a Yellowstone sourced acidic hot-spring based microbe.
A 3D Paper-Based Microbial Fuel Cell
Researchers have developed a proof-of-concept 3D paper-based microbial fuel cell (MFC) that could take advantage of capillary action to guide the liquids through the MFC system and to eliminate the need for external power.
Just Gellin’: How To Grow Strong Muscles-On-A-Chip
USC researchers hope to usher in new treatments for patients with muscular dystrophy.
Lasers Carve the Path to Tissue Engineering
A new technique, developed at EPFL, combines microfluidics and lasers to guide cells in 3D space, overcoming major limitations to tissue engineering.
How Cancer Spreads in the Body
Cancer cells appear to depend on an unusual survival mechanism to spread around the body, according to an early study led by Queen Mary University of London.
Tumor Cells Develop Predictable Characteristics
Scientists have discovered that cancer cells at the edge of a tumor that are close to the surrounding environment are predictably different from the cells within the interior of the tumor.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!