Corporate Banner
Satellite Banner
Molecular & Clinical Diagnostics
Scientific Community
Become a Member | Sign in
Home>News>This Article

Oscillating Microscopic Beads Could be Key to Biolab on a Chip

Published: Tuesday, September 25, 2012
Last Updated: Tuesday, September 25, 2012
Bookmark and Share
MIT team finds way to manipulate and measure magnetic particles without contact, potentially enabling multiple medical tests on a tiny device.

If you throw a ball underwater, you’ll find that the smaller it is, the faster it moves: A larger cross-section greatly increases the water’s resistance. Now, a team of MIT researchers has figured out a way to use this basic principle, on a microscopic scale, to carry out biomedical tests that could eventually lead to fast, compact and versatile medical-testing devices.

The results, based on work by graduate student Elizabeth Rapoport and assistant professor Geoffrey Beach, of MIT’s Department of Materials Science and Engineering (DMSE), are described in a paper published in the journal Lab on a Chip. MIT graduate student Daniel Montana ’11 also contributed to the research as an undergraduate.

The balls used here are microscopic magnetic beads that can be “decorated” with biomolecules such as antibodies that cause them to bind to specific proteins or cells; such beads are widely used in biomedical research. The key to this new work was finding a way to capture individual beads and set them oscillating by applying a variable magnetic field. The rate of their oscillation can then be measured to assess the size of the beads.

When these beads are placed in a biological sample, biomolecules attach to their surfaces, making the beads larger — a change that can then be detected through the biomolecules effect on the beads’ oscillation. This would provide a way to detect exactly how much of a target biomolecule is present in a sample, and provide a way to give a virtually instantaneous electronic readout of that information.

This new technique, for the first time, allows these beads — each about one micrometer, or millionth of a meter, in diameter — to be used for precise measurements of tiny quantities of materials. This could, for example, lead to tests for disease agents that would need just a tiny droplet of blood and could deliver results instantly, instead of requiring laboratory analysis.

In a paper published earlier this year in the journal Applied Physics Letters, the same MIT researchers described their development of a technique for creating magnetic tracks on a microchip surface, and rapidly transporting beads along those tracks. (The technology required is similar to that used to read and write magnetic data on a computer’s hard disk.) An operational device using this new approach would consist of a small reservoir above the tracks, where the liquid containing the magnetic beads and the biological sample would be placed.

Rather than pumping the fluid and the particles through channels, as in today’s microfluidic devices, the particles would be controlled entirely through changes in applied magnetic fields. By controlling the directions of magnetic fields in closely spaced adjacent regions, the researchers create tiny areas with extremely strong magnetic fields, called magnetic domain walls, whose position can be shifted along the track. “We can use the magnetic domain walls to capture and transport the beads along the tracks,” Beach says.

In the researchers’ most recent paper, Rapoport explains, they have now shown that once a bead is captured, a magnetic field can be used to shake it back and forth. Then, the researchers measure how fast the bead moves as they change the frequency of the oscillation. “The resonant frequency is a function of the bead size,” she says — and could be used to reveal whether the bead has grown in size through attachment to a target biomolecule.

Besides being potentially quicker and requiring a far smaller biological sample to produce a result, such a device would be more flexible than existing chip-based biomedical tests, the researchers say. While most such devices are specifically designed to detect one particular kind of protein or disease agent, this new device could be used for a wide variety of different tests, simply by inserting a fresh batch of fluid containing beads coated with the appropriate reactant. After the test, the material could be flushed out, and the same chip used for a completely different test by inserting a different type of magnetic beads. “You’d just use it, wash it off, and use it again,” Rapoport says.

There are dozens of types of magnetic beads commercially available now, which can be coated to react with many different biological materials, Beach explains, so such a test device could have enormous flexibility.

The MIT team has not yet used the system to detect biological molecules. Rather, they used magnetic beads of different sizes to demonstrate that their system is capable of detecting size differences corresponding to those between particles that are bound to biological molecules and those that are not. Having succeeded in this proof of concept, the researchers’ next step will be to repeat the experiment using biological samples.

“We now have all the elements required to make a sensing device,” Beach says. The next step is to combine the pieces in an operational device and demonstrate its performance.

R. Sooryakumar, a professor of physics at Ohio State University who was not involved in this research, calls this an “innovative approach.”

“It is very interesting how the researchers combine technologies that are well understood for applications in computing and data storage, and apply them to something completely different,” Sooryakumar says. He adds, “These magnetic devices are potentially valuable tools that could go well beyond how one may normally expect them to be used. The ramifications, for example in food safety and health care, such as pathogen or cancer detection, are indeed exciting.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Biomedical Imaging at One-Thousandth the Cost
Mathematical modeling enables $100 depth sensor to approximate the measurements of a $100,000 piece of lab equipment.
Tuesday, November 24, 2015
Real-Time Data for Cancer Therapy
Biochemical sensor implanted at initial biopsy could allow doctors to better monitor and adjust cancer treatments.
Thursday, August 06, 2015
Bacterial Computing
The “friendly” bacteria inside our digestive systems are being given an upgrade, which may one day allow them to be programmed to detect and ultimately treat diseases such as colon cancer and immune disorders.
Monday, July 13, 2015
Chemists Design a Quantum-Dot Spectrometer
New instrument is small enough to function within a smartphone, enabling portable light analysis.
Friday, July 03, 2015
Diagnosing Cancer with Help from Bacteria
Engineered probiotics can detect tumors in the liver.
Friday, May 29, 2015
Using Sound Waves To Detect Rare Cancer Cells
Acoustic device can rapidly isolate circulating tumor cells from patient blood samples.
Tuesday, April 07, 2015
MIT And MGH Form Strategic Partnership
First set of grants support projects designed to improve diagnostic accuracy and cost-effectiveness.
Friday, October 17, 2014
Biologists Find An Early Sign Of Cancer
Patients show boost in certain amino acids years before diagnosis of pancreatic cancer.
Tuesday, September 30, 2014
New Sensor Tracks Zinc in Cells
Shifts in zinc’s location could be exploited for early diagnosis of prostate cancer.
Wednesday, December 11, 2013
New Approach to Global Health Challenges
MIT’s Institute for Medical Engineering and Science brings many tools to the quest for new disease treatments and diagnostic devices.
Friday, September 27, 2013
Brain Scans May Help Diagnose Dyslexia
Differences in a key language structure can be seen even before children start learning to read.
Thursday, August 15, 2013
Device Finds Stray Cancer Cells in Patients’ Blood
A microfluidic device that captures circulating tumor cells could give doctors a noninvasive way to diagnose and track cancers.
Wednesday, April 10, 2013
AAAS Annual Meeting Puts MIT Science and Technology on Display
The 2013 conference, held last week in Boston, featured research presentations, hands-on demonstrations.
Friday, February 22, 2013
Tiny Tools Help Advance Medical Discoveries
MIT researchers are designing tools to analyze cells at the microscale.
Tuesday, January 08, 2013
Improving the Accuracy of Cancer Diagnoses
New spectroscopy technique could help doctors better identify breast tumors.
Tuesday, January 08, 2013
Scientific News
When it Comes to Breast Cancer, Common Pigeon is No Bird Brain
If pigeons went to medical school and specialized in pathology or radiology, they’d be pretty good at distinguishing digitized microscope slides and mammograms of normal vs. cancerous breast tissue, a new study has found.
Mathematical Model Forecasts the Path of Breast Cancer
Chances of survival depend on which organs breast cancer tumors colonize first.
Measuring microRNAs in Blood to Speed Cancer Detection
A simple, ultrasensitive microRNA sensor holds promise for the design of new diagnostic strategies and, potentially, for the prognosis and treatment of pancreatic and other cancers.
Biomedical Imaging at One-Thousandth the Cost
Mathematical modeling enables $100 depth sensor to approximate the measurements of a $100,000 piece of lab equipment.
Improving Outcomes for Lung Cancer and Diabetic Patients
Novel technologies have been developed with support from SBRI Healthcare funding.
New Way of Detecting Cancer
A new RNA test of blood platelets can be used to detect, classify and pinpoint the location of cancer by analysing a sample equivalent to one drop of blood.
Rapid, Portable Ebola Diagnostic
Scientists confirmed the efficiency of the novel Ebola detection method in field trials.
New, Better Test for Prostate Cancer
A study from Karolinska Institutet shows that a new test for prostate cancer is better at detecting aggressive cancer than PSA.
Blood Test Picks Out Prostate Cancer Drug Resistance
Scientists have developed a blood test that can identify key mutations driving resistance to a widely used prostate cancer drug, and identify in advance patients who will not respond to treatment.
Antibody Targets Key Cancer Marker
University of Wisconsin-Madison researchers have created a molecular structure that attaches to a molecule on highly aggressive brain cancer and causes tumors to light up in a scanning machine.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos