Corporate Banner
Satellite Banner
Molecular & Clinical Diagnostics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Bioengineers at UCSB Design Rapid Diagnostic Tests Inspired by Nature

Published: Wednesday, October 03, 2012
Last Updated: Wednesday, October 03, 2012
Bookmark and Share
Bioengineers have designed inexpensive medical diagnostic tests that take only a few minutes to perform.

Their findings may aid efforts to build point-of-care devices for quick medical diagnosis of sexually transmitted diseases (STDs), allergies, autoimmune diseases, and a number of other diseases. The new technology could dramatically impact world health, according to the research team.

The rapid and easy-to-use diagnostic test consists of a nanometer-scale DNA "switch" that can quickly detect antibodies specific to a wide range of diseases. The research is described in an article published this month in the Journal of the American Chemical Society.

The design was created by the research group of Kevin W. Plaxco, a professor in UCSB's Department of Chemistry and Biochemistry. He noted that, despite the power of current diagnostic tests, a significant limitation is that they still require complex laboratory procedures. "Patients typically must wait for days or even weeks to receive the results of most STD tests," said Plaxco. "The blood sample has to be transported to the lab, its content analyzed by trained personnel, and the results sent back to the doctor's office. If we can move testing to the point of care, it eliminates the lag between testing and treatment, which would enhance the effectiveness of medical interventions, and, for infectious diseases like STDs, reduce transmission."

The key breakthrough underlying this new technology came from observing nature. "All creatures, from bacteria to humans, monitor their environments using amazing ‘molecular nanoswitches' that signal the presence of a specific target by changing their structure," said Alexis Vallée-Bélisle, a postdoctoral scholar and co-first author of the study. "For example, on the surface of our cells, there are millions of receptor proteins that detect various molecules by switching from an ‘off state' to an ‘on state.' The beauty of these switches is that they are able to work directly in very complex environments such as whole blood."

Plaxco's research group teamed with Francesco Ricci, professor at University of Rome Tor Vergata and co-first author of the paper, to build synthetic molecular switches that signal their state via a change in electric current. This change in current can be measured using inexpensive electronics similar to those in the home glucose test meter used by diabetics to check their blood sugar. Using these "nature-inspired" nanoswitches, the researchers were able to detect anti-HIV antibodies directly in whole blood in less than five minutes.

"A great advantage of these electrochemical nanoswitches is that their sensing principle can be generalized to many different targets, allowing us to build inexpensive devices that could detect dozens of disease markers in less than five minutes in the doctor's office or even at home," said Ricci.
The authors noted that it may take several years to bring the devices to the market.

The additional co-authors are Fan Xia of Huazhong University of Science and Technology in Wuhan, China; and Takanori Uzawa of Hokkaido University in Sapporo, Japan.

This work was funded by the National Institute of Health, the Fond Québécois de la Recherche sur la Nature et les Technologies; the Italian Ministry of University and Research (MIUR) project "Futuro in Ricerca;" and the Bill & Melinda Gates Foundation, through the Grand Challenges Explorations Grant.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
Monday, February 08, 2016
New Virus Disovered, Linked To Hepatitis C
Study is first to reveal entire genetic makeup of human pegivirus 2.
Tuesday, December 15, 2015
‘Purity’ Of Tumor Samples May Significantly Bias Genomic Analyses
Non-cancerous tumor components influence research findings, clinical classifications, study shows.
Monday, December 07, 2015
New Method for Screening Cancer Cells
Parallel microfiltration could lead to better treatments for a number of diseases, UCLA-led study says.
Thursday, December 03, 2015
When it Comes to Breast Cancer, Common Pigeon is No Bird Brain
If pigeons went to medical school and specialized in pathology or radiology, they’d be pretty good at distinguishing digitized microscope slides and mammograms of normal vs. cancerous breast tissue, a new study has found.
Monday, November 30, 2015
Crunching Numbers to Combat Cancer
UCSF receives $5 million to integrate data from cancer research models.
Wednesday, September 16, 2015
Ultrafast DNA Diagnostics
New technology developed by UC Berkeley bioengineers promises to make a workhorse lab tool cheaper, more portable and many times faster by accelerating the heating and cooling of genetic samples with the switch of a light.
Monday, August 03, 2015
Genetic Markers for Detecting and Treating Ovarian Cancer
Custom bioinformatics algorithm identifies human mRNAs that distinguish ovarian cancer cells from normal cells and provide new therapeutic targets
Wednesday, May 27, 2015
May the Cellular Force be With You
Like tiny construction workers, cells sculpt embryonic tissues and organs in 3D space.
Friday, December 13, 2013
Chemical Signature for Fast Form of Parkinson's Found
The physical decline experienced by Parkinson's disease patients eventually leads to disability and a lower quality of life.
Monday, November 25, 2013
Discovery Could Lead to Saliva Test for Pancreatic Cancer
The disease is typically diagnosed through an invasive and complicated biopsy.
Tuesday, October 15, 2013
Cost-Effective Recommendations for Cancer Screening
When public health budgets are constrained, mammography screening should begin later and occur less frequently.
Tuesday, September 17, 2013
Sugar Helps Scientists Find and Assess Prostate Tumors
New GE technology enables UCSF researchers to safely detect tumors in real time.
Friday, August 23, 2013
Dentistry School Receives $5M to Study Saliva Biomarkers
Imagine having a sample of your saliva taken at the dentist's office, and then learning within minutes whether your risk for stomach cancer is higher than normal.
Thursday, August 15, 2013
Detailed look at Genetics of Human, Mouse Embryos
Scientists have used the powerful technology of single-cell RNA sequencing to track the genetic development of a human and a mouse embryo with unprecedented accuracy.
Wednesday, July 31, 2013
Scientific News
Grant Supports Project To Develop Simple Test To Screen For Cervical Cancer
UCLA Engineering announces funding from Bill and Melinda Gates Foundation.
Loss Of Y Chromosome Increases Risk Of Alzheimer’s
Men with blood cells that do not carry the Y chromosome are at greater risk of being diagnosed with Alzheimer’s disease. This is in addition to an increased risk of death from other causes, including many cancers. These new findings by researchers at Uppsala University could lead to a simple test to identify those at risk of developing Alzheimer’s disease.
Making Virus Sensors Cheap and Simple
Researchers at The University of Texas at Austin demonstrated the ability to detect single viruses in a solution containing murine cytomegalovirus (MCMV).
Heart Defect Prediction Technology Could Lead to Earlier, More Informed Treatment
Experimental method uses genetics-guided biomechanics, patient-specific stem cells.
Biosensor Detects Molecules Linked to Cancer, Alzheimer's and Parkinson's
Novel biosensor has been proven capable of detecting molecules associated with neurodegenerative diseases and some types of cancer.
Big Data Can Save Lives
The sharing of genetic information from millions of cancer patients around the world could be key to revolutionising cancer prevention and care, according to a leading cancer expert from Queen's University Belfast.
Fast, Simple Test for Colitis
A minimally invasive screening for ulcerative colitis using emerging infrared technology could be a rapid and cost-effective method for detecting disease that eliminates the need for biopsies and intrusive testing of the human body.
Scans Reveal Babies of Mothers with Gestational Diabetes Have More Body Fat
Researchers at Imperial College London have found that the babies born to mothers with gestational diabetes have more body fat at two months of age compared to babies born to healthy mothers.
New Device Could Improve Cancer Detection
UBC researchers develop a microfluidic device to capture circulating tumor cells.
Plasma Biomarkers for Breast Cancer Diagnosis
Plasma lipidomics profiling identified lipid biomarkers in distinguishing early-stage breast cancer from benign lesions.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!