Corporate Banner
Satellite Banner
Molecular & Clinical Diagnostics
Scientific Community
Become a Member | Sign in
Home>News>This Article

New Gene Test Detects Early Mouth Cancer Risk

Published: Monday, October 08, 2012
Last Updated: Monday, October 08, 2012
Bookmark and Share
Researchers from Queen Mary, University of London have developed a new gene test that can detect pre-cancerous cells in patients with benign-looking mouth lesions.

The test could potentially allow at-risk patients to receive earlier treatment, significantly improving their chance of survival.

The study, published today in the International Journal of Cancer,showed that the quantitative Malignancy Index Diagnostic System (qMIDS) test had a cancer detection rate of 91-94 per cent when used on more than 350 head and neck tissue specimens from 299 patients in the UK and Norway.

Mouth cancer affects more than 6,200 people in the UK each year and more than half a million people worldwide, with global figures  estimated to rise above one million a year by 2030. The majority of cases are caused by either smoking or chewing tobacco and drinking alcohol.

Mouth lesions are very common and only five to 30 per cent may turn into cancers. If detected in the early stages treatment can be curative, but until now no test has been able to accurately detect which lesions will become cancerous.

The current diagnostic gold standard is histopathology – where  biopsy tissue taken during an operation is examined under a microscope by a pathologist. This is a relatively invasive procedure and many mouth cancers are being diagnosed at later stages when the chances of survival are significantly reduced. For patients presenting with advanced disease, survival rates are poor (10-30 per cent at five years).

Lead investigator and inventor of the test Dr Muy-Teck Teh, from the Institute of Dentistry at Queen Mary, University of London,said: “A sensitive test capable of quantifying a patient’s cancer risk is needed to avoid the adoption of a ‘wait-and-see’ intervention. Detecting cancer early, coupled with appropriate treatment can significantly improve patient outcomes, reduce mortality and alleviate long-term public healthcare costs.”

The qMIDS test measures the levels of 16 genes which are converted, via a diagnostic algorithm,into a“malignancy index” which quantifies the risk of the lesion becoming cancerous. It is less invasive than the standard histopathology methods as it requires only a 1-2 mm piece of tissue (less than half a grain of rice), and it takes less than three hours to get the results, compared to up to a week for standard histopathology.

Consultant oral and maxillofacial surgeon, Professor Iain Hutchison, founder of Saving Faces and co-author on the study, said: “We are excited about this new test as it will allow us to release patients with harmless lesions from regular follow-up and unnecessary anxiety, whilst identifying high-risk patients at an early stage and giving them appropriate treatment. Mouth cancer, if detected early when the disease is most receptive to surgical treatment, has a very high cure rate.”

Dr Catherine Harwood, a consultant dermatologist and a co-author on the study, said: “Our preliminary studies have shown promising results indicating that the test can potentially also be used for identifying patients with suspicious skin or vulva lesions, offering the opportunity of earlier and less invasive treatments.”

Whilst this proof-of-concept study validates qMIDS as a diagnostic test for early cancer detection, further clinical trials are required to evaluate the long-term clinical benefits of the test for mouth cancers.

With further development it could potentially be applied to other cancer types as the test is based on a cancer gene – FOXM1 – which is highly expressed in many cancer types. In this study the researchers used the qMIDS test to detect early cancer cells in vulva and skin specimens with promising results.

Dr Teh’s earlier research on FOXM1 – which showed that when FOXM1 is over expressed the protein loses its control over cell growth, allowing cells to proliferate abnormally–was awarded ‘Molecule of the Year 2010’ by the International Society for Molecular and Cell Biology and Biotechnology Protocols and Research.

This study was jointly funded by the Facial Surgery Research Foundation - Saving Faces (UK), the Bergen Medical Research Foundation, Norwegian Cancer Research Association, British Skin Foundation and Cancer Research UK.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,700+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
Education and Expense: The Barriers to Mass Spectrometry in Clinical Laboratories?
Here we examine the perceived barriers to mass spec in clinical laboratories and explore the possible drivers behind the recent shift in uptake of the technology in clinical settings.
Potential New Diagnosis and Therapy for Breast Cancer
Scientists at the University of York, using clinical specimens from charity Breast Cancer Now’s Tissue Bank, have conducted new research into a specific sodium channel that indicates the presence of cancer cells and affects tumour growth rates.
Paving the Way for Diamonds to Trace Early Cancers
Researchers from the University of Sydney reveal how nanoscale 'diamonds' can light up early-stage cancers in MRI scans.
Will Brain Palpation Soon Be Possible?
Researchers have developed non-invasive brain imaging technique which provides the same information as physical palpation.
Groundbreaking Computer Program Diagnoses Cancer in Two Days
Researchers have combined genetics with computer science and created a new diagnostic technology can with 85 per cent certainty identify the source of the disease and thus target treatment and, ultimately, improve the prognosis for the patient.
Detecting HIV Diagnostic Antibodies with DNA Nanomachines
New research may revolutionize the slow, cumbersome and expensive process of detecting the antibodies that can help with the diagnosis of infectious and auto-immune diseases such as rheumatoid arthritis and HIV.
Horse Illness Shares Signs of Human Disease
Horses with a rare nerve condition have similar signs of disease as people with conditions such as Alzheimer’s, a study has found.
Compound Doubles Up On Cancer Detection
Researchers have found that tagging a pair of markers found almost exclusively on a common brain cancer yields a cancer signal that is both more obvious and more specific to cancer.
The Age of Humans Controlling Microbes
Engineered bacteria could soon be used to detect environmental toxins, treat diseases, and sustainably produce chemicals and fuels.
Predictive Model for Breast Cancer Progression
Biomedical engineers have demonstrated a proof-of-principle technique that could give women and their oncologists more personalized information to help them choose options for treating breast cancer.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,700+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos