Corporate Banner
Satellite Banner
Molecular & Clinical Diagnostics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

New Statistical Method offers Automatic Mitotic Cell Detection for Cancer Diagnosis

Published: Thursday, November 15, 2012
Last Updated: Thursday, November 15, 2012
Bookmark and Share
Scientists have developed a statistical image analysis method which can assist in the grading of breast cancer by automatically segmenting tumour regions and detecting dividing cells in tissue samples.

The system, developed at the University of Warwick, promises to bring objectivity and automation to the cancer grading process which is used to determine the aggressiveness of the treatment offered to the patient.

Number of mitotic cells, cells which are dividing to create new cells, is a key indicator used by histopathologists for diagnosing and grading cancer.

At present the dominant system in the UK and much of the world – the Nottingham Grading System - is based on expert analysis of tissue samples to determine the severity of the cancer.

As a subjective system dependent on visual analysis, it can produce substantial variability in diagnostic assessment, resulting in low agreement between pathologists.

A pilot study conducted by researchers at Warwick found there to be an agreement of 19 per cent between three pathologists in identifying the mitotic cells.

In response to the need for more objectivity, a team at the University of Warwick have developed a three-step method which takes an image of tissue samples and applies statistical modelling to detect mitotic cells in that image.

Dr Nasir Rajpoot from the Department of Computer Science at the University of Warwick said: “It has long been recognised that there is a need to increase objectivity in the cancer grading process.

“This grading process determines the treatment offered to people who have been diagnosed with cancer, so it’s vital to get it right in order to prevent patients undergoing unnecessarily aggressive treatments.

“We believe our method takes a significant step towards this by offering an objective, automatic technique to assist the pathologists in grading of breast cancer.”

The method consists of three key steps. Firstly it segments the tumour margins, a step which is critical to the accuracy of mitotic cell detection.

Secondly it statistically models the intensity distribution of mitotic and non-mitotic cells in tumour areas, ignoring the non-tumorous areas. This step therefore identifies potential mitotic cells in tumour areas.

Finally the method looks at the surrounding architecture of these potential mitotic cell candidates in order to confirm them as mitotic cells, thereby reducing the number of possible false alarms.

Although there are algorithms in existence which provide automation in some parts of the mitotic cell detection process, the method developed at Warwick is the first to offer a comprehensive solution addressing the entire process.

The method is outlined in a study focusing on breast cancer histology images presented at a major conference on the subject.

Although the research to date has centred on breast cancer histology images, the scientists believe the method can be applied to other types of cancer.

In a pilot study, the method has been successfully tested against two expert pathologists’ identification of the mitotic cells. Larger scale trials are currently under way and a patent application has been filed. The researchers are also keen to collaborate with industrial partners.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
The Changing Tides of the In Vitro Diagnostics Market
With the increasing focus in personalized medicine, diagnostics plays a crucial role in patient monitoring.
Poor Survival Rates in Leukemia Linked to Persistent Genetic Mutations
For patients with an often-deadly form of leukemia, new research suggests that lingering cancer-related mutations – detected after initial treatment with chemotherapy – are associated with an increased risk of relapse and poor survival.
'Fountain of Youth' Protein Points to Possible Human Health Benefit
Patients with higher blood levels of growth factor have lower risk of cardiovascular problems.
Signature of Microbiomes Linked to Schizophrenia
Studying microbiomes in throat may help identify causes and treatments of brain disorder.
Imaging Software Could Speed Breast Cancer Diagnosis
Technology could improve access to diagnostic services in developing countries.
Data Mining DNA For Polycystic Ovary Syndrome Genes
A new Northwestern Medicine genome-wide association study of PCOS – the first of its kind to focus on women of European ancestry – has provided important new insights into the underlying biology of the disorder.
Algorithm Interprets Breathing Difficulties to Aid in Medical Care
Researchers from North Carolina State University have developed an efficient algorithm that can interpret the wheezing of patients with breathing difficulties to give medical providers information about what’s happening in the lungs.
Researchers Develop qPCR Prognosis Test for NSCLC Patients
A nine-gene molecular prognostic index (MPI) for patients with early-stage non-small cell lung cancer (NSCLC) was able to provide accurate survival stratification and could potentially inform the use of adjuvant therapy in patients struggling with the disease.
Genetic Test Could Improve Blood Cancer Treatment
Testing for genetic risk factors could improve treatment for myeloma – a cancer of the blood and bone marrow – by helping doctors identify patients at risk of developing more aggressive disease.
PTR-MS Breath Test Shows Potential for Detecting Liver Disease
Researchers at the University of Birmingham have published results that suggest a non-invasive breath test for liver disease using an IONICON PTR-MS.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!