Corporate Banner
Satellite Banner
Molecular & Clinical Diagnostics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

New Statistical Method offers Automatic Mitotic Cell Detection for Cancer Diagnosis

Published: Thursday, November 15, 2012
Last Updated: Thursday, November 15, 2012
Bookmark and Share
Scientists have developed a statistical image analysis method which can assist in the grading of breast cancer by automatically segmenting tumour regions and detecting dividing cells in tissue samples.

The system, developed at the University of Warwick, promises to bring objectivity and automation to the cancer grading process which is used to determine the aggressiveness of the treatment offered to the patient.

Number of mitotic cells, cells which are dividing to create new cells, is a key indicator used by histopathologists for diagnosing and grading cancer.

At present the dominant system in the UK and much of the world – the Nottingham Grading System - is based on expert analysis of tissue samples to determine the severity of the cancer.

As a subjective system dependent on visual analysis, it can produce substantial variability in diagnostic assessment, resulting in low agreement between pathologists.

A pilot study conducted by researchers at Warwick found there to be an agreement of 19 per cent between three pathologists in identifying the mitotic cells.

In response to the need for more objectivity, a team at the University of Warwick have developed a three-step method which takes an image of tissue samples and applies statistical modelling to detect mitotic cells in that image.

Dr Nasir Rajpoot from the Department of Computer Science at the University of Warwick said: “It has long been recognised that there is a need to increase objectivity in the cancer grading process.

“This grading process determines the treatment offered to people who have been diagnosed with cancer, so it’s vital to get it right in order to prevent patients undergoing unnecessarily aggressive treatments.

“We believe our method takes a significant step towards this by offering an objective, automatic technique to assist the pathologists in grading of breast cancer.”

The method consists of three key steps. Firstly it segments the tumour margins, a step which is critical to the accuracy of mitotic cell detection.

Secondly it statistically models the intensity distribution of mitotic and non-mitotic cells in tumour areas, ignoring the non-tumorous areas. This step therefore identifies potential mitotic cells in tumour areas.

Finally the method looks at the surrounding architecture of these potential mitotic cell candidates in order to confirm them as mitotic cells, thereby reducing the number of possible false alarms.

Although there are algorithms in existence which provide automation in some parts of the mitotic cell detection process, the method developed at Warwick is the first to offer a comprehensive solution addressing the entire process.

The method is outlined in a study focusing on breast cancer histology images presented at a major conference on the subject.

Although the research to date has centred on breast cancer histology images, the scientists believe the method can be applied to other types of cancer.

In a pilot study, the method has been successfully tested against two expert pathologists’ identification of the mitotic cells. Larger scale trials are currently under way and a patent application has been filed. The researchers are also keen to collaborate with industrial partners.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Heart Arrhythmia Caused by Mosaic of Mutant Cells
Researchers have solved the genetic mystery of an infant suffering from heart arrhythmia.
Crispr Toolbox Expanded By Protein
Researchers have shown a newly discovered CRISPR protein has two distinct RNA cutting activities.
Over Two-Thirds of Cervical Cancer Deaths Prevented
Cervical screening prevents 70% of cervical cancer deaths and if all eligible women regularly attended screening this would rise to 83%.
Detecting Bacterial Infections in Newborns
Researchers tested an alternative way to diagnose bacterial infections in infants—by analyzing RNA biosignatures from a small blood sample.
Mechanisms of Parkinson’s Pathology
Defects that lead to cells’ failure to decommission faulty mitochondria cause nerve cells to die, triggering the symptoms of Parkinson’s disease.
Case for Liquid Biopsies Builds in Advanced Lung Cancer
Study addresses unmet need for better, non-invasive tests called out in recent "Moonshot" blue ribbon panel report
Genetic Misdiagnoses of Heart Condition
Analysis found several genetic variations previously linked with a heart condition were harmless, leading to condition misdiagnosis.
Opening Door to Oesophageal Cancer Targeted Treatments
Scientists have discovered that oesophageal cancer can be classified into three different subtypes.
Genetic Diversity of Enzymes Alters Metabolic Individuality
ToMMo scientists have shown that genetic polymorphisms, structural location of mutation and effect for phenotype correlate with each other.
IMM Uses Nanowizard® to Evaluate Cardiovascular Disease Risk
JPK Instruments reports on the use of their NanoWizard® AFM system at the Instituto de Medicina Molecular at the University of Lisbon.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!