Corporate Banner
Satellite Banner
Molecular & Clinical Diagnostics
Scientific Community
Become a Member | Sign in
Home>News>This Article

Scientists Discover New Diagnostic Markers for Kawasaki Disease

Published: Friday, December 21, 2012
Last Updated: Thursday, December 20, 2012
Bookmark and Share
Proteins discovered in human urine offers new opportunities for the diagnosis, study and treatment of disease.

Researchers have discovered proteins in human urine that offer new opportunities for the diagnosis, study and maybe even the treatment of Kawasaki disease.

Mass spectrometry-based proteomic analysis of the human urine proteome, the entire set of proteins found in human urine, uncovered molecular markers that offer significant improvements for the diagnosis of the disease.

The results are reported in a new study published in EMBO Molecular Medicine.

“There is no diagnostic test for Kawasaki disease. Currently available diagnostic markers lack the specificity and sensitivity needed for reliable detection of the disease which has motivated our decision to use proteomics to identify new, improved biomarkers,” said Susan Kim, a rheumatologist at Boston Children’s Hospital and an instructor at Harvard Medical School.

Kim continued, “Kawasaki disease is often difficult to diagnose and is the most prevalent cause of acquired childhood heart disease in the developed world. Failure to detect it can lead to coronary artery aneurysms and in some cases death, particularly in children who are not diagnosed early enough or when the diagnosis is not considered and acted upon due to the presence of only some of the classic symptoms.”

Kawasaki disease can occur at any age but is most commonly found in children under the age of five years. The disease appears to influence the immune system in such a way that it attacks its own tissues. This leads to inflammation that can damage blood vessels, most notably around the heart.

If untreated, Kawasaki disease leads to coronary artery aneurysms in up to 25% of cases.

The researchers used highly sensitive mass spectrometry techniques to profile the proteome of urine samples collected from children who had symptoms of Kawasaki disease.

Several molecules were discovered that were exclusively present in the urine of patients with the disease. In particular, elevated levels of filamin C and meprin A were detected in both human blood and urine samples and show considerable potential for use as diagnostics.

Filamin C is a protein that helps maintain the structural integrity of heart and skeletal muscle.

Meprin A is an enzyme that breaks down proteins and which is known to regulate the activities of other proteins linked to inflammation.

Both of these markers could be used to identify patients with Kawasaki disease accurately using tests that are readily amenable for routine medical use.

“The urine proteome consists of thousands of protein molecules. Patients with Kawasaki disease have a unique urinary proteome that is distinct from the proteome observed for children with other causes of fever,” remarked Hanno Steen, director of the Proteomics Center at Boston Children’s Hospital and associate professor at Harvard Medical School.

Steen continued, “In a group of 107 patients, we were able to distinguish children with Kawasaki disease from those with mimicking conditions much more reliably and accurately than currently available testing by measuring their levels of meprin A and filamin C in urine.”

The researchers note that further validation of the diagnostic markers is needed and this work is in progress.

The researchers suggest that the development of clinical tests using these new markers may improve the accuracy of diagnosis of children with suspected Kawasaki disease and assist in the development of new treatments.

For this purpose, the scientists have made the analyzed proteomes openly available at the Peptide Atlas (

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
When it Comes to Breast Cancer, Common Pigeon is No Bird Brain
If pigeons went to medical school and specialized in pathology or radiology, they’d be pretty good at distinguishing digitized microscope slides and mammograms of normal vs. cancerous breast tissue, a new study has found.
Mathematical Model Forecasts the Path of Breast Cancer
Chances of survival depend on which organs breast cancer tumors colonize first.
Measuring microRNAs in Blood to Speed Cancer Detection
A simple, ultrasensitive microRNA sensor holds promise for the design of new diagnostic strategies and, potentially, for the prognosis and treatment of pancreatic and other cancers.
Biomedical Imaging at One-Thousandth the Cost
Mathematical modeling enables $100 depth sensor to approximate the measurements of a $100,000 piece of lab equipment.
Improving Outcomes for Lung Cancer and Diabetic Patients
Novel technologies have been developed with support from SBRI Healthcare funding.
New Way of Detecting Cancer
A new RNA test of blood platelets can be used to detect, classify and pinpoint the location of cancer by analysing a sample equivalent to one drop of blood.
Rapid, Portable Ebola Diagnostic
Scientists confirmed the efficiency of the novel Ebola detection method in field trials.
New, Better Test for Prostate Cancer
A study from Karolinska Institutet shows that a new test for prostate cancer is better at detecting aggressive cancer than PSA.
Blood Test Picks Out Prostate Cancer Drug Resistance
Scientists have developed a blood test that can identify key mutations driving resistance to a widely used prostate cancer drug, and identify in advance patients who will not respond to treatment.
Antibody Targets Key Cancer Marker
University of Wisconsin-Madison researchers have created a molecular structure that attaches to a molecule on highly aggressive brain cancer and causes tumors to light up in a scanning machine.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos