Corporate Banner
Satellite Banner
Molecular & Clinical Diagnostics
Scientific Community
Become a Member | Sign in
Home>News>This Article

A Molecular “Superglue” Based on Flesh-Eating Bacteria

Published: Monday, April 15, 2013
Last Updated: Monday, April 15, 2013
Bookmark and Share
In a classic case of turning an enemy into a friend, scientists have engineered a protein from flesh-eating bacteria to act as a molecular “superglue” that promises to become a disease fighter.

And their latest results, which make the technology more versatile, were the topic of a report here today at the 245th National Meeting & Exposition of the American Chemical Society, the world’s largest scientific society.

“We’ve turned the tables and put one kind of flesh-eating bacterium to good use,” said Mark Howarth, Ph.D., who led the research. “We have engineered one of its proteins into a molecular superglue that adheres so tightly that the set-up we used to measure the strength actually broke. It resists high and low temperatures, acids and other harsh conditions and seals quickly. With this material we can lock proteins together in ways that could underpin better diagnostic tests — for early detection of cancer cells circulating in the blood, for instance. There are many uses in research, such as probing how the forces inside cells change the biochemistry and affect health and disease.”

Howarth’s team at the University of Oxford in the United Kingdom genetically engineered the glue from a protein, FbaB, that helps Streptococcus pyogenes (S. pyogenes) bacteria infect cells. S. pyogenes is one of the microbes that can cause the rare necrotizing fasciitis, or flesh-eating bacteria syndrome, in which difficult-to-treat infections destroy body tissue.

They split FbaB into two parts, a larger protein and a smaller protein subunit, termed a peptide. Abbreviating S. pyogenes as “Spy,” they named the small peptide “SpyTag” and the larger protein “SpyCatcher.” The gluing action occurs when SpyTag and SpyCatcher meet. They quickly lock together by forming one of the strongest possible chemical bonds. SpyCatcher and SpyTag can be attached to the millions of proteins in the human body and other living things, thus gluing proteins together.

In an advance reported at the meeting, Howarth described how Jacob Fierer, a graduate student on the research team, greatly reduced the size of the SpyCatcher part of the technology. That achievement makes the technology more flexible, enabling scientists to connect proteins into new architectures, he said.

One of the applications on the horizon involves testing the technology as a new way to detect “circulating tumor cells,” or CTCs. Tumors shed these cells into the bloodstream, where they may act as seeds, spreading or metastasizing cancer from the original site to other parts of the body. That spreading is the reason why cancer is such a serious health problem. Detecting CTCs is an active area of research worldwide because of its potential for early diagnosis of cancer — from blood samples rather than biopsies — and determining when new treatments may be needed to prevent the disease from spreading.

Howarth said that the Spy technology has advantages over other molecular gluing systems that are available. SpyCatcher and SpyTag, for instance, can glue two proteins together at any point in the protein. “That flexibility allows us many different ways to label proteins and gives us new approaches to assemble proteins together for diagnostic tests,” Howarth explained.

Howarth and colleagues are working with Isis Innovation, the University of Oxford’s technology transfer company, to find potential partners to bring the Spy system to the market.

The researchers acknowledge funding from the Clarendon Fund.

Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,200+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Portable Test Rapidly Detects Zika
To better diagnose and track the disease, scientists are now reporting a new $2 test that in the lab can accurately detect low levels of the virus in saliva.
Friday, July 01, 2016
Sniffing Out Cancer
Scientists have been exploring new ways to “smell” signs of cancer by analyzing what’s in patients’ breath.
Thursday, October 01, 2015
New, Improved Approach To Mammograms
Detecting breast cancer in women with dense mammary tissues could become more reliable with a new mammogram procedure that researchers have now tested in pre-clinical studies of mice.
Friday, September 18, 2015
Cheap Diagnostics with a Portable "Paper Machine"
Scientists have developed a cheap, portable system for point of care diagnostics for a range of infectious diseases, genetic conditions and cancer.
Monday, July 20, 2015
Scientific News
Point of Care Diagnostics - A Cautious Revolution
Advances in molecular biology, coupled with the miniaturization and improved sensitivity of assays and devices in general, have enabled a new wave of point-of-care (POC) or “bedside” diagnostics.
Nanomedicine for Breast Cancer Treatment
Using nanoparticles measuring only billionths of a meter in size, doctors are able to deliver drug molecules directly to the affected tissue.
Clamping Down on Biomolecules
Physicists have developed a novel nanotool that provides a means of characterizing the mechanical properties of biomolecules.
Smartphone Laboratory Detects Cancer
Researchers develop low-cost, portable laboratory on a smartphonecapable of analysing multiple samples simultaneously.
MRIs for Fetal Health
Algorithm could help analyze fetal scans to determine whether interventions are warranted.
Illumina Contributes to ClinVar Database
The contribution includes variants of all classifications, from pathogenic to benign, identified during interpretation of whole genome sequences generated in the CLIA-certified, CAP-accredited Illumina Clinical Services Laboratory.
Signaling Pathway Could Be Key to Improved Osteoporosis Treatment
Inhibition of SIK2 enzyme both stimulates bone formation and reduces bone breakdown in animal model.
Supercomputers Could Improve Cancer Diagnostics
Researchers push the boundaries of cancer research through high-performance computing to map the human immunone.
Transgenomic, Precipio Diagnostics Merger
Merger will creates a robust diagnostic platform focused on improving accuracy of cancer diagnoses.
Inflammation Test May Predict Cardiovascular Disease
An assessment combining measures of immune-cell responsiveness predicted cardiovascular problems in individuals who likely would have slipped under the radar.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,200+ scientific videos