Corporate Banner
Satellite Banner
Molecular & Clinical Diagnostics
Scientific Community
Become a Member | Sign in
Home>News>This Article

A Molecular “Superglue” Based on Flesh-Eating Bacteria

Published: Monday, April 15, 2013
Last Updated: Monday, April 15, 2013
Bookmark and Share
In a classic case of turning an enemy into a friend, scientists have engineered a protein from flesh-eating bacteria to act as a molecular “superglue” that promises to become a disease fighter.

And their latest results, which make the technology more versatile, were the topic of a report here today at the 245th National Meeting & Exposition of the American Chemical Society, the world’s largest scientific society.

“We’ve turned the tables and put one kind of flesh-eating bacterium to good use,” said Mark Howarth, Ph.D., who led the research. “We have engineered one of its proteins into a molecular superglue that adheres so tightly that the set-up we used to measure the strength actually broke. It resists high and low temperatures, acids and other harsh conditions and seals quickly. With this material we can lock proteins together in ways that could underpin better diagnostic tests — for early detection of cancer cells circulating in the blood, for instance. There are many uses in research, such as probing how the forces inside cells change the biochemistry and affect health and disease.”

Howarth’s team at the University of Oxford in the United Kingdom genetically engineered the glue from a protein, FbaB, that helps Streptococcus pyogenes (S. pyogenes) bacteria infect cells. S. pyogenes is one of the microbes that can cause the rare necrotizing fasciitis, or flesh-eating bacteria syndrome, in which difficult-to-treat infections destroy body tissue.

They split FbaB into two parts, a larger protein and a smaller protein subunit, termed a peptide. Abbreviating S. pyogenes as “Spy,” they named the small peptide “SpyTag” and the larger protein “SpyCatcher.” The gluing action occurs when SpyTag and SpyCatcher meet. They quickly lock together by forming one of the strongest possible chemical bonds. SpyCatcher and SpyTag can be attached to the millions of proteins in the human body and other living things, thus gluing proteins together.

In an advance reported at the meeting, Howarth described how Jacob Fierer, a graduate student on the research team, greatly reduced the size of the SpyCatcher part of the technology. That achievement makes the technology more flexible, enabling scientists to connect proteins into new architectures, he said.

One of the applications on the horizon involves testing the technology as a new way to detect “circulating tumor cells,” or CTCs. Tumors shed these cells into the bloodstream, where they may act as seeds, spreading or metastasizing cancer from the original site to other parts of the body. That spreading is the reason why cancer is such a serious health problem. Detecting CTCs is an active area of research worldwide because of its potential for early diagnosis of cancer — from blood samples rather than biopsies — and determining when new treatments may be needed to prevent the disease from spreading.

Howarth said that the Spy technology has advantages over other molecular gluing systems that are available. SpyCatcher and SpyTag, for instance, can glue two proteins together at any point in the protein. “That flexibility allows us many different ways to label proteins and gives us new approaches to assemble proteins together for diagnostic tests,” Howarth explained.

Howarth and colleagues are working with Isis Innovation, the University of Oxford’s technology transfer company, to find potential partners to bring the Spy system to the market.

The researchers acknowledge funding from the Clarendon Fund.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Sniffing Out Cancer
Scientists have been exploring new ways to “smell” signs of cancer by analyzing what’s in patients’ breath.
Thursday, October 01, 2015
New, Improved Approach To Mammograms
Detecting breast cancer in women with dense mammary tissues could become more reliable with a new mammogram procedure that researchers have now tested in pre-clinical studies of mice.
Friday, September 18, 2015
Cheap Diagnostics with a Portable "Paper Machine"
Scientists have developed a cheap, portable system for point of care diagnostics for a range of infectious diseases, genetic conditions and cancer.
Monday, July 20, 2015
Scientific News
Sniffing Out Cancer
Scientists have been exploring new ways to “smell” signs of cancer by analyzing what’s in patients’ breath.
New Test Detects All Viruses
A new test detects virtually any virus that infects people and animals, according to research at Washington University School of Medicine in St. Louis, where the technology was developed.
Scientists Create World’s Largest Catalog of Human Genomic Variation
An international team of scientists from the 1000 Genomes Project Consortium has created the world’s largest catalog of genomic differences among humans, providing researchers with powerful clues to help them establish why some people are susceptible to various diseases.
Chip-Based Technology Enables Reliable Direct Detection of Ebola Virus
Hybrid device integrates a microfluidic chip for sample preparation and an optofluidic chip for optical detection of individual molecules of viral RNA.
Diagnostics Breakthrough Brings Viral Sequencing to Doctors’ Toolkit
New screening tool produces up to 10,000-fold improvement in viral matches compared with traditional high-throughput methods.
New Cell Type May Help Explain Dangerous Food Allergies
Researchers have discovered a new cell type that appears to drive life-threatening food allergies and may help explain why some people get severe allergic reactions and others do not.
Molecular Diagnostics At Home
Electrochemical test's sensing principle may be generalized to many different targets, leading to inexpensive devices that could detect dozens of disease markers in less than 5 minutes.
DNA Alterations as Among Earliest to Occur in Lung Cancer Development
Genetic footprints of precancer detectable in some blood samples.
New, Improved Approach To Mammograms
Detecting breast cancer in women with dense mammary tissues could become more reliable with a new mammogram procedure that researchers have now tested in pre-clinical studies of mice.
Undiagnosed Diseases Network Launches Online Application Portal
UDN Gateway enables patients to apply to national network of clinical sites.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos