Corporate Banner
Satellite Banner
Molecular & Clinical Diagnostics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

A Cautionary Tale on Genome-Sequencing Diagnostics for Rare Diseases

Published: Tuesday, May 14, 2013
Last Updated: Tuesday, May 14, 2013
Bookmark and Share
Studies in several children have raising new questions about inheritance, genomic sequencing, and diagnostic.

Children born with rare, inherited conditions known as Congenital Disorders of Glycosylation, or CDG, have mutations in one of the many enzymes the body uses to decorate its proteins and cells with sugars. Properly diagnosing a child with CDG and pinpointing the exact sugar gene that's mutated can be a huge relief for parents—they better understand what they're dealing with and doctors can sometimes use that information to develop a therapeutic approach. Whole-exome sequencing, an abbreviated form of whole-genome sequencing, is increasingly used as a diagnostic for CDG.

But researchers at Sanford-Burnham Medical Research Institute (Sanford-Burnham) recently discovered three children with CDG who are mosaics—only some cells in some tissues have the mutation. For that reason, standard exome sequencing initially missed their mutations, highlighting the technique's diagnostic limitations in some rare cases. These findings were published April 4 in the American Journal of Human Genetics.

"This study was one surprise after another," said Hudson Freeze, Ph.D., director of Sanford-Burnham's Genetic Disease Program and senior author of the study. "What we learned is that you have to be careful—you can't simply trust that you'll get all the answers from gene sequencing alone."

Searching for a rare disease mutation

Complicated arrangements of sugar molecules decorate almost every protein and cell in the body. These sugars are crucial for cellular growth, communication, and many other processes. As a result of a mutation in an enzyme that assembles these sugars, children with CDG experience a wide variety of symptoms, including intellectual disability, digestive problems, seizures, and low blood sugar.

To diagnose CDG, researchers will test the sugar arrangements on a common protein called transferrin. Increasingly, they'll also look for known CDG-related mutations by whole-exome sequencing, a technique that sequences only the small portion of the genome that encodes proteins. The patients are typically three to five years old.

A cautionary tale for genomic diagnostics

In this study, the researchers observed different proportions and representations of sugar arrangements depending on which tissues were examined. In other words, these children have the first demonstrated cases of CDG "mosaicism"—their mutations only appear in some cell types throughout the body, not all. As a result, the usual diagnostic tests, like whole-exome sequencing, missed the mutations. It was only when Freeze's team took a closer look, examining proteins by hand using biochemical methods, did they identify the CDG mutations in these three children.

The team then went back to the three original children and examined their transferrin again. Surprisingly, these readings, which had previously shown abnormalities, had become normal. Freeze and his team believe this is because mutated cells in the children's livers died and were replaced by normal cells over time.

"If the transferrin test hadn't been performed early on for these children, we never would've picked up these cases of CDG. We got lucky in this case, but it just shows that we can't rely on any one test by itself in isolation," Freeze said.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Preparing for Potential Zika Outbreaks
Experts at the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) are developing tools to monitor the spread of the Zika virus and are conducting research to gather more solid data to better assess the risks associated with the infection.
What do Banana Peels and Human Skin Have in Common?
Human skin and banana peels have something in common: they produce the same enzyme when attacked. By studying fruit, researchers have come up with an accurate method for diagnosing the stages of this form of skin cancer.
Biomarker for Recurring HPV-Linked Oropharyngeal Cancers
A look-back analysis of HPV infection antibodies in patients treated for oropharyngeal (mouth and throat) cancers linked to HPV infection suggests at least one of the antibodies could be useful in identifying those at risk for a recurrence of the cancer, say scientists at the Johns Hopkins University.
Counting Cancer-busting Oxygen Molecules
Researchers from the Centre for Nanoscale BioPhotonics (CNBP), an Australian Research Centre of Excellence, have shown that nanoparticles used in combination with X-rays, are a viable method for killing cancer cells deep within the living body.
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
"Gene Fusion" Drives Childhood Brain Cancers
Study co-led by Penn scientists highlights potential targets for future cancer therapies.
Head Injury Patients Develop Brain Clumps Associated with Alzheimer’s Disease
Scientists have revealed that protein clumps associated with Alzheimer's disease are also found in the brains of people who have had a head injury.
New Way to Identify Brain Tumor Aggressiveness
Looking at a brain tumor’s epigenetic signature may help guide therapy.
OncoCyte, The Wistar Institute Enter Global Licensing Agreement
Exclusive rights to commercialize biomarker assay follows years of positive collaboration on lung cancer diagnostic test.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!