Corporate Banner
Satellite Banner
Molecular & Clinical Diagnostics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Oxford Optronix Launches Tissue Oxygenation and Blood Flow Monitoring Systems

Published: Monday, July 08, 2013
Last Updated: Monday, July 08, 2013
Bookmark and Share
OxyLite™ Pro and OxyFlo™ Pro systems combine to deliver an advanced and unique tissue vitality monitoring platform.

Oxford Optronix has announced the formal launch of its next-generation OxyLite™ Pro and OxyFlo™ Pro systems for tissue oxygenation and blood flow monitoring - delivering the most advanced tissue vitality monitoring platform on the market.

This latest release marks the third generation of the company’s OxyLite™ and OxyFlo™ brand systems, first launched in 1991.

The OxyLite and OxyFlo systems are unique modular instruments that utilize fibre-optic micro-sensors to provide real-time measurements of local tissue oxygenation (ptiO2), tissue blood perfusion (blood flow) and tissue temperature.

These instruments, which are designed to be used either individually or ‘in-tandem’ for simultaneous measurements of tissue oxygenation, blood flow and temperature, are widely used across the globe in areas of biomedical research concerned with hypoxia and ischaemia.

With oxygen sensors based on optical fluorescence technology - pioneered at Oxford Optronix - OxyLite™ Pro is a two- or four-channel oxygen and temperature monitoring instrument that provides continuous, quantitative and high-sensitivity monitoring of oxygen availability to cells and tissue.

This touch-screen based system is remarkably easy to use and is specifically targeted at oxygen measurements in the physiological range, as well as under conditions of hypoxia, offering application in research areas including tumour oxygen monitoring/angiogenesis; cerebral oxygen monitoring in models of stroke and brain injury; vital organ and muscle tissue monitoring; flap monitoring; ophthalmology; wound healing, fMRI-validation techniques; and in-vitro dissolved oxygen monitoring in cell culture and bioreactors.

OxyFlo™ Pro is the company’s third-generation, two- or four-channel laser-Doppler tissue blood flow monitoring instrument.

Oxford Optronix is a pioneer in the development of laser-Doppler based blood flow monitoring (LDF) technology and its latest touch-screen, high-performance system sets a new standard in sensitivity and ease of use.

An ideal system for measuring changing tissue blood flow in acute experimental models, OxyFlo™ Pro offers applications in peripheral vascular disorders; cerebral perfusion monitoring in models of stroke and brain injury; tumour perfusion monitoring/angiogenesis; blood flow in free flaps and pedicle flaps; wound healing; and gastroenterology.

Commenting on the combined system, Dr Hai-Ling Margaret Cheng of University of Toronto, Hospital for Sick Children in Canada said: “In our studies on the response to gas inhalation in abdominal organs, OxyLite and OxyFlo allowed us to monitor tissue pO2 and perfusion response simultaneously in the liver and kidney. No other minimally invasive system could capture dynamic changes with such fine temporal resolution, and no other system could provide concurrent pO2 and perfusion measurement in multiple tissue regions. Oxford Optronix enabled us to understand the physiological phenomena underlying our magnetic resonance imaging measurements. It is truly a powerful, must-have technology.”

Andy Obeid PhD, CEO of Oxford Optronix added: “The release of our new OxyLite™ Pro and OxyFlo™ Pro systems is the culmination of 5 years of continued product development in this area for us.”

He added: “We work closely with our customers to develop targeted solutions that offer unmatched sensitivity, stability and accuracy coupled with total ease-of-use. The introduction of our third-generation platform, enables us to continue providing the ‘gold-standard’ in tissue vitality monitoring that our customers have come to expect.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Some Women With PCOS May Have Adrenal Disorder
Researchers at NIH have found that a subgroup of women with PCOS, a leading cause of infertility, may produce excess adrenal hormones.
Faster Detection of Pathogens in the Lungs
Thanks to new molecular-based methods, mycobacterial pathogens that cause pulmonary infections or tuberculosis can now be detected much more quickly.
Proteins in Blood of Heart Disease Patients May Predict Adverse Events
Nine-protein test shown superior to conventional assessments of risk.
£14m EU Project To Aid Meningitis Diagnosis and Cut Antibiotic Use
An international team of doctors are aiming to develop a rapid test to allow medics to quickly identify bacterial infection in children.
Bringing AFM to Medical Diagnostics
Company has announced that its NanoWizard® AFM and ForceRobot® systems are being used in the field of medical diagnostics in the Supersensitive Molecular Layer Laboratory of POSTECH in Korea.
Scientific Gains May Make Electronic Nose the Next Everyday Device
UT Dallas team breathes new life into possibilities by using CMOS integrated circuits technology.
Electronic Sensor Tells Dead Bacteria From Live
The sensor, which measures 'osmoregulation', is a potential future tool for medicine and food safety.
Diagnosing Systemic Infections Quickly, Reliably
Team develop rapid and specific diagnostic assay that could help physicians decide within an hour whether a patient has a systemic infection and should be hospitalized for aggressive intervention therapy.
A Future Tool for Medicine, Food Safety
A new type of electronic sensor that might be used to quickly detect and classify bacteria for medical diagnostics and food safety has passed a key hurdle by distinguishing between dead and living bacteria cells.
Genome Sequencing Helps Determine End of TB Outbreak
Using genome sequencing, researchers from the University of British Columbia, along with colleagues at the Imperial College in London, now have the ability to determine when a tuberculosis (TB) outbreak is over.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!