Satellite Banner
Molecular & Clinical Diagnostics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NIH Funds Research to Explore a Cell Communication Process

Published: Wednesday, August 14, 2013
Last Updated: Wednesday, August 14, 2013
Bookmark and Share
Researchers will investigate the emerging field of extracellular RNA and its role in human health conditions.

The National Institutes of Health announced today it will award $17 million this year for 24 research projects designed to improve scientists’ understanding of a newly discovered type of cell-to-cell communication based on extracellular (outside the cell) RNA, also called exRNA. Through these awards, scientists will explore basic exRNA biology and develop tools and technologies that apply new knowledge about exRNA to the research, diagnosis and treatment of diseases. To unlock the potential of this new scientific field, the awarded research projects will address conditions in which exRNA could play a role, including many types of cancer, bone marrow disorders, heart disease, Alzheimer’s disease and multiple sclerosis.

The collaborative, cross-cutting Extracellular RNA Communication program is supported by the NIH Common Fund and led by a trans-NIH team that includes the National Center for Advancing Translational Sciences (NCATS); National Cancer Institute (NCI); National Heart, Lung, and Blood Institute (NHLBI); National Institute on Drug Abuse (NIDA); and National Institute of Neurological Disorders and Stroke (NINDS).

“We have a tremendous opportunity to explore a recently discovered novel way that cells communicate,” said NIH Director Francis S. Collins, M.D., Ph.D. “Expanding our understanding of this emerging scientific field could help us determine the role extracellular RNA plays in health and disease, and unlocking its mysteries may provide our nation’s scientists with new tools to better diagnose and treat a wide range of diseases.”

Scientists think exRNA can regulate many functions in the body and may have an important role in a variety of diseases, but they still know very little about basic exRNA biology. Most RNA works inside cells to translate genes into proteins that are necessary for organisms to function. Other types of RNA control which proteins and the amount of those proteins the cells make. Until recently, scientists believed RNA worked mostly inside the cell that produced it. Now, recent findings show cells can release RNA in the form of exRNA to travel through body fluids and affect other cells. ExRNA can act as a signaling molecule, communicating with other cells and carrying information from cell to cell throughout the body.

Researchers hope to use some kinds of exRNA as biomarkers, or indicators of the presence, absence or stage of a disease. These biomarkers may enable scientists to understand and diagnose diseases earlier and more effectively. Scientists also will use exRNA to develop molecular treatments for diseases.

“To harness exRNA’s enormous potential for diagnostics and therapeutics in a broad range of diseases, we first need to understand more about different types of exRNA, how cells make and release it, how it travels through the body, how it targets and affects specific cells, and how the amount and type of exRNA can change in disease,” said James Anderson, M.D., Ph.D., director of the Division of Program Coordination, Planning, and Strategic Initiatives, which oversees the NIH Common Fund. “Awards in this exciting new field will help advance our collective understanding of exRNA communication and will enable research in many biomedical research fields.”

Multidisciplinary teams of investigators will carry out research projects in a number of critical scientific areas. NCATS will administer 18 awards through which researchers will develop biomarkers from exRNA and design new ways to use exRNA in treatments. NCI will oversee five projects that address how cells make and release exRNA (biogenesis), how and where exRNA travels through body fluids to other cells (biodistribution), how cells take in exRNA that is traveling through body fluids (uptake), and how exRNA changes the function of cells (effector functions). NIDA will support a project to develop a Data Management and Resource Repository that will house all of the data generated by these projects, including a public ExRNA Atlas website to serve as a community-wide resource for exRNA research standards, protocols, data, tools and technology. Scientists working on these projects will form an ExRNA Consortium to collaborate, share information, and spread knowledge to the larger scientific community and public.

“NCATS develops, demonstrates and disseminates new technologies that catalyze improvements in human health” said NCATS Director Christopher P. Austin, M.D. “These awards epitomize that mission, delving into a brand new area of science to discover new targets for interventions, diagnostics, biomarkers and therapeutics — all of which will speed the path from discovery to improved health.”

The 24 awards are milestone-driven cooperative agreements. Individual projects will be supported for up to five years, except for the Data Management and Resource Repository, which could be supported longer. To learn more about the research projects, visit http://commonfund.nih.gov/exrna/fundedresearch.

Later this year, NIH plans to issue a request for applications to develop an exRNA reference profile, which is a catalog of the types of exRNA found in various body fluids from healthy humans. NHLBI will lead this effort to enable studies on how exRNA profiles of people with diseases differ from those of healthy people.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,900+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Detecting Bacterial Infections in Newborns
Researchers tested an alternative way to diagnose bacterial infections in infants—by analyzing RNA biosignatures from a small blood sample.
Wednesday, September 14, 2016
Seeking Innovation to Combat Antimicrobial Resistance
Federal prize competition, with $20 million in prizes, seeks to develop new laboratory diagnostic tools to detect and distinguish antibiotic resistant bacteria.
Friday, September 09, 2016
Genetic Misdiagnoses of Heart Condition
Analysis found several genetic variations previously linked with a heart condition were harmless, leading to condition misdiagnosis.
Wednesday, September 07, 2016
Diagnosing Bacterial Infections in Blood Samples
Researchers have diagnosed a bacterial infection from a blood sample in infants.
Wednesday, August 24, 2016
Public Support for National Study
Survey shows the majority of respondents support or show willingness for national precision medicine study.
Thursday, August 18, 2016
NIH Funds Zika Virus Study Involving U.S. Olympic Team
Researchers will monitor potential Zika virus exposure among a subset of athletes traveling to Brazil.
Wednesday, July 06, 2016
Implementation Science Approaches to Reduce Mother-to-Child HIV Transmission
The NIH study will investigate best practices to ease major disease burden in Sub-Saharan Africa.
Friday, July 01, 2016
Some Women With PCOS May Have Adrenal Disorder
Researchers at NIH have found that a subgroup of women with PCOS, a leading cause of infertility, may produce excess adrenal hormones.
Tuesday, June 28, 2016
NIH Sequences Genome of a Fungus
Researchers at the Institute have sequenced genome of human, mouse and rat Pneumocystis that cause life-threatening Pneumonia in immunosuppressed hosts.
Tuesday, April 12, 2016
Children With Cushing Syndrome May Have Higher Suicide Risk
Researchers at NIH have found that depression, anxiety and suicidal thoughts increase after treatment.
Wednesday, March 30, 2016
Couples’ Pre-Pregnancy Caffeine Consumption Linked to Miscarriage Risk
Researchers at NIH have found daily multivitamin before and after conception greatly reduces miscarriage risk.
Friday, March 25, 2016
Researchers Identify Molecule Needed for Sperm Activation
Researchers at NIH have discovered new options for male contraception as well as treatments for infertility resulting from problems with sperm mobility.
Friday, March 18, 2016
A Child’s First Eight Years Critical For Substance Abuse Prevention
Researchers at NIH have released summary of research on early childhood risk and protective factors.
Friday, March 11, 2016
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Monday, February 08, 2016
NIH Unveils FY2016–2020 Strategic Plan
Detailed plan sets course for advancing scientific discoveries and human health.
Thursday, December 17, 2015
Scientific News
Cancer Genetics: Key to Diagnosis, Therapy
When applied judiciously, cancer genetics directs caregivers to the right drug at the right time, while sparing patients of unnecessary or harmful treatments.
Accelerating the Detection of Foodborne Bacterial Outbreaks
The speed of diagnosis of foodborne bacterial outbreaks could be improved by a new technique developed by researchers at the Georgia Institute of Technology.
Cancer Gene Predicts Treatment Response in Leukaemia
Study indicates the patients suffering from a lethal for of acute myeloid leukemia may live longer when receiving milder chemotherapy drugs.
New Diagnostic Tool for Familial Mediterranean Fever
A new tool developed by researchers at VIB and Ghent University could improve the process of diagnosing Familial Mediterranean Fever.
'Lab on the Skin' for Sweat Analysis
Northwestern University researchers develop a low-cost wearable electronic device that collects and analyzes sweat for health monitoring.
Molecular Signature for Aggressive Brain Tumor Uncovered
Researchers have identified genetic mutations in a highly agressive brain cancer that distinguishes the agressive, from the benign forms of the cancer.
Malaria Parasite Evades Rapid Test Detection in Children
A study at the University of North Carolina found that gene deletion poses a threat to Malaria eradication efforts.
Novel Urine Test to Predict High-Risk Cervical Cancer
Preliminary studies affirm accuracy and potential cost savings to screen for virus-caused malignancy.
GFC Diagnostics Wins Longitude Prize Discovery Award
The global award was won for the development of a cheap, quick and simple MRSA Test.
Understanding Circulating Tumour Cells
Research team develops new tool to track traveling cancer cells in the bloodstream.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!