Corporate Banner
Satellite Banner
Molecular & Clinical Diagnostics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Hamamatsu Photonics New Upgraded High Performance MPPC Detectors

Published: Friday, September 20, 2013
Last Updated: Friday, September 20, 2013
Bookmark and Share
New detectors utilize a Geiger-mode pixelated avalanche photodiode structure.

Hamamatsu Photonics has introduced a completely updated range of Multi-Pixel Photon Counter (MPPC) detectors.

Hamamatsu’s already highly regarded MPPC technology has found uses in various applications from medical physics and high energy physics to general optical measurement applications.

A new catalogue has been released detailing the numerous performance improvements to both the bare devices and to the high performance modules.

The MPPC detectors utilize a Geiger-mode pixelated avalanche photodiode structure for ultra-low-level light detection.

Each pixel contains a quenching circuit so that simultaneous photon events can be counted separately and with a high degree of accuracy.

The detectors feature typical gain values from 250,000 to several million, depending on the specific device. The MPPC detectors also feature high photon detection efficiency from 320nm to 900nm.

Unlike traditional photomultiplier tubes (PMT) the MPPC can be operated at low voltage (less than 80 Volts) and they are insensitive to magnetic fields.

Some key areas of improvement to the MPPC include; greatly reduced dark count, reduced after pulsing, increased photon detection efficiency, improvements in timing resolution and linearity as well as reduced crosstalk.

The result of these and other improvements means that the MPPC now has a much improved signal-to-noise ratio, wider operating voltage range, improved time resolution and a wider dynamic range.

As well as these improvements to the product range, there are also multiple new bare and modular solutions not previously offered.

For example, Hamamatsu now offers a single pixel module; effectively taking a single MPPC pixel, of 50µm or 100µm diameter, and housing this within a cooled module. Dark counts as low as 7cps are easily achievable in this way!

These improvements and the various new detector options mean the MPPC is now a serious contender to conventional photon counting devices in many more applications.

The MPPC is ideally suited to a wide range of applications including positron emission tomography, high-energy physics, DNA sequencing, fluorescence measurement, nuclear medicine, point of care systems, drug discovery, medical diagnostic equipment and environmental analysis among many more.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Over Two-Thirds of Cervical Cancer Deaths Prevented
Cervical screening prevents 70% of cervical cancer deaths and if all eligible women regularly attended screening this would rise to 83%.
Detecting Bacterial Infections in Newborns
Researchers tested an alternative way to diagnose bacterial infections in infants—by analyzing RNA biosignatures from a small blood sample.
Mechanisms of Parkinson’s Pathology
Defects that lead to cells’ failure to decommission faulty mitochondria cause nerve cells to die, triggering the symptoms of Parkinson’s disease.
Case for Liquid Biopsies Builds in Advanced Lung Cancer
Study addresses unmet need for better, non-invasive tests called out in recent "Moonshot" blue ribbon panel report
Genetic Misdiagnoses of Heart Condition
Analysis found several genetic variations previously linked with a heart condition were harmless, leading to condition misdiagnosis.
Opening Door to Oesophageal Cancer Targeted Treatments
Scientists have discovered that oesophageal cancer can be classified into three different subtypes.
Genetic Diversity of Enzymes Alters Metabolic Individuality
ToMMo scientists have shown that genetic polymorphisms, structural location of mutation and effect for phenotype correlate with each other.
IMM Uses Nanowizard® to Evaluate Cardiovascular Disease Risk
JPK Instruments reports on the use of their NanoWizard® AFM system at the Instituto de Medicina Molecular at the University of Lisbon.
$1M NIH Grant to Refine PCR Based Cancer Test
Researchers at Cornell University, Weill Cornell Medicine, the University of California, San Francisco, and the Infectious Diseases Institute in Kampala, Uganda, recieve a four-year, $1 million grant to hone technology for a quick, in-the-field diagnosis of Kaposi's sarcoma — a cancer frequently related to HIV infections.
Zika Reference Strain Sequenced
An international research team has sequenced a strain of Zika for use as a WHO reference strain.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!