Corporate Banner
Satellite Banner
Molecular & Clinical Diagnostics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

May the Cellular Force be With You

Published: Friday, December 13, 2013
Last Updated: Friday, December 13, 2013
Bookmark and Share
Like tiny construction workers, cells sculpt embryonic tissues and organs in 3D space.

This task is complicated and requires constant communication between cells to coordinate their actions and generate the forces that will shape their environment into complex tissue morphologies.

Biologists have long studied the communication between cells and their behavior while building these structures, but until now, it had not been possible to see the forces cells generate to shape them. A new method to quantify the mechanical forces that cells exert while building tissues and organs can help answer long unresolved questions in biology and provide new diagnostic tools for medicine.

Developed initially in the Wyss Institute at Harvard University by Otger Campàs and Donald Ingber, this technique is the first of its kind to measure the mechanical forces that cells generate in living embryos. Now an assistant professor who holds the Mellichamp Chair in Systems Biology at UC Santa Barbara, Campàs leads a lab that is developing this droplet technique in several new directions, and applying it to discover the patterns of cellular forces that shape embryonic structures in fish and chicken.

“There is a lot of interest in understanding how genetics and mechanics interplay to shape embryonic tissues,” said Campàs. “I believe this technique will help many scientists explore the role that mechanical forces play in morphogenesis and, more generally, in biology.”

So far, the vast majority of knowledge on how cellular forces affect cell behavior has come from cells studied in vitro — through cultures that isolate cells from their natural environment. Using soft gel substrates or gel matrices, researchers have been able to measure the traction forces of these cells moving in a petri dish. However, almost nothing is known about the forces that cells generate while sculpting embryonic tissues and organs, and how these affect cell behavior in their natural environment.

“In general, cells behave in a different way inside an embryo than in a dish,” Campàs said. Some behaviors may be similar, but many others are not. Depending on the environment, cells respond in a variety of ways, he added.

“It has not been possible to demonstrate a direct causal relationship between mechanics and behavior in vivo because we previously had no way to directly quantify force levels at specific locations in 3D living tissues,” said Donald Ingber, director of the Wyss Institute for Biologically Inspired Engineering at Harvard. “This method now allows us to make these measurements, and I hope it will bring mechanobiology to a new level.”

To measure these miniscule forces, Campàs and Ingber, used tiny droplets of a special, flour-based oil. Once stabilized and with controlled surface tension, the droplet’s surface chemistry is modified to allow for the adhesion of living cells. It is also fluorescently labeled to allow observers to see its shape. When cells push and pull on an oil droplet, they deform it, and this deformation provides a direct read-out of the forces they exert.

Using this technique, Campàs and Ingber showed that it is possible to measure cellular forces in different conditions, such as 3D cellular aggregates or in living mouse mandibles. Research findings for this work are published in the advance online version of the journal Nature Methods.

This method can help answer questions that biologists have been trying to answer for decades: What are the forces that cells generate to sculpt embryonic tissues and organs? And how do these forces affect cell behavior and gene expression in the cell’s natural environment, the living embryo?

“Understanding how cells shape embryonic structures requires measuring the patterns of cellular forces while the structure is being built,” said Campàs. “If you take the cells out of the embryo and put them in a dish, you don’t have the tissue or organ structure anymore.”

The knowledge gained by the ability to observe the behavior of developing cells as they mature could lead to further knowledge regarding a wide variety of conditions including birth defects or tumor growth and metastasis. Moreover, this method can also provide insight into diseases in which imbalances in forces exerted by tissues’ constituent cells are an issue, according to Ingber.

“Examples include hyper contractility in airway smooth muscle cells in asthma; vascular smooth muscle cells in hypertension; intestinal smooth muscle in irritable bowel disease; skin connective tissue cells in contractures and scars, etc. as well as low contractility in heart muscle cells in heart failure, and so on,” said Ingber. Investigating the forces behind tissue stiffness and contractility may also aid the diagnosis of tissue abnormalities.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,900+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
Monday, February 08, 2016
New Virus Disovered, Linked To Hepatitis C
Study is first to reveal entire genetic makeup of human pegivirus 2.
Tuesday, December 15, 2015
‘Purity’ Of Tumor Samples May Significantly Bias Genomic Analyses
Non-cancerous tumor components influence research findings, clinical classifications, study shows.
Monday, December 07, 2015
New Method for Screening Cancer Cells
Parallel microfiltration could lead to better treatments for a number of diseases, UCLA-led study says.
Thursday, December 03, 2015
When it Comes to Breast Cancer, Common Pigeon is No Bird Brain
If pigeons went to medical school and specialized in pathology or radiology, they’d be pretty good at distinguishing digitized microscope slides and mammograms of normal vs. cancerous breast tissue, a new study has found.
Monday, November 30, 2015
Crunching Numbers to Combat Cancer
UCSF receives $5 million to integrate data from cancer research models.
Wednesday, September 16, 2015
Ultrafast DNA Diagnostics
New technology developed by UC Berkeley bioengineers promises to make a workhorse lab tool cheaper, more portable and many times faster by accelerating the heating and cooling of genetic samples with the switch of a light.
Monday, August 03, 2015
Genetic Markers for Detecting and Treating Ovarian Cancer
Custom bioinformatics algorithm identifies human mRNAs that distinguish ovarian cancer cells from normal cells and provide new therapeutic targets
Wednesday, May 27, 2015
Chemical Signature for Fast Form of Parkinson's Found
The physical decline experienced by Parkinson's disease patients eventually leads to disability and a lower quality of life.
Monday, November 25, 2013
Discovery Could Lead to Saliva Test for Pancreatic Cancer
The disease is typically diagnosed through an invasive and complicated biopsy.
Tuesday, October 15, 2013
Cost-Effective Recommendations for Cancer Screening
When public health budgets are constrained, mammography screening should begin later and occur less frequently.
Tuesday, September 17, 2013
Sugar Helps Scientists Find and Assess Prostate Tumors
New GE technology enables UCSF researchers to safely detect tumors in real time.
Friday, August 23, 2013
Dentistry School Receives $5M to Study Saliva Biomarkers
Imagine having a sample of your saliva taken at the dentist's office, and then learning within minutes whether your risk for stomach cancer is higher than normal.
Thursday, August 15, 2013
Detailed look at Genetics of Human, Mouse Embryos
Scientists have used the powerful technology of single-cell RNA sequencing to track the genetic development of a human and a mouse embryo with unprecedented accuracy.
Wednesday, July 31, 2013
Major Changes Urged for Cancer Screening and Treatment
Scientific panel recommends new personalized strategies to reduce cancer overtreatment.
Tuesday, July 30, 2013
Scientific News
Cancer Genetics: Key to Diagnosis, Therapy
When applied judiciously, cancer genetics directs caregivers to the right drug at the right time, while sparing patients of unnecessary or harmful treatments.
Accelerating the Detection of Foodborne Bacterial Outbreaks
The speed of diagnosis of foodborne bacterial outbreaks could be improved by a new technique developed by researchers at the Georgia Institute of Technology.
Cancer Gene Predicts Treatment Response in Leukaemia
Study indicates the patients suffering from a lethal for of acute myeloid leukemia may live longer when receiving milder chemotherapy drugs.
New Diagnostic Tool for Familial Mediterranean Fever
A new tool developed by researchers at VIB and Ghent University could improve the process of diagnosing Familial Mediterranean Fever.
'Lab on the Skin' for Sweat Analysis
Northwestern University researchers develop a low-cost wearable electronic device that collects and analyzes sweat for health monitoring.
Molecular Signature for Aggressive Brain Tumor Uncovered
Researchers have identified genetic mutations in a highly agressive brain cancer that distinguishes the agressive, from the benign forms of the cancer.
Malaria Parasite Evades Rapid Test Detection in Children
A study at the University of North Carolina found that gene deletion poses a threat to Malaria eradication efforts.
Novel Urine Test to Predict High-Risk Cervical Cancer
Preliminary studies affirm accuracy and potential cost savings to screen for virus-caused malignancy.
GFC Diagnostics Wins Longitude Prize Discovery Award
The global award was won for the development of a cheap, quick and simple MRSA Test.
Understanding Circulating Tumour Cells
Research team develops new tool to track traveling cancer cells in the bloodstream.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!