Corporate Banner
Satellite Banner
Molecular & Clinical Diagnostics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Hot Spots for Molecules

Published: Thursday, June 12, 2014
Last Updated: Thursday, June 12, 2014
Bookmark and Share
The accurate placement of molecules into gaps between gold nanoantennas enables ultra-high sensitivity molecular detection.

The ability to detect tiny quantities of molecules is important for chemical sensing as well as biological and medical diagnostics. In particular, some of the most challenging and advanced applications involve rare compounds for which only a few molecules may be present at a time.

The most promising devices for achieving ultrahigh-precision detection are nanoscale sensors, where molecules are placed in tiny gaps between small gold plates. But this method is effective only if the molecules are positioned accurately within the gaps.

Now, Jinghua Teng from the A*STAR Institute of Materials Research and Engineering, Singapore, and colleagues from the National University of Singapore, have developed a sensor where molecules are efficiently guided and placed into position.

The electronic resonances occurring in gold nanostructures are like very powerful antennas, able to amplify radiation from small molecules in their vicinity. This permits even the detection of single molecules. In order for the signal to be picked up by the antennas, however, the molecules need to be precisely located within electromagnetic ‘hot spots’.

“We approached this challenge and developed a method to selectively bind the molecules to the electromagnetic hot spots in the nanoantenna structure for maximum effect,” explains Teng.

The researchers needed to prepare the device surface such that the molecules bind only to the desired areas between the gold plates - not on them. They achieved this by depositing a thin titanium film between the gold plates. The titanium oxidizes in air, forming stable titanium dioxide, which is insulating and has very different properties to the gold plates.

The researchers then covered the surface with various organic solutions that selectively prevent proteins and other molecules from binding to the gold while attracting the molecules of interest to the titanium pad. In initial tests, signals from molecules attached to the titanium in the hot spot showed a six times higher sensitivity than those randomly attached across the device.

The next step will be to increase the sensor sensitivity to the ultimate limit, explains Teng. “People have been dreaming of and working toward single-molecule sensing. This work is part of these efforts. It provides a way to selectively bind biomolecules to the hot spots and proves that it can enhance the molecular sensitivity and reduce the amount of sample required.”

Further improvements in device design will however be required, adds Teng. “Moving forward, we would like to further push the sensitivity by optimizing the structure and try multi-agent sensing in one chip.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
AACC 2016 Sees Clinical Chemistry Labs Drive Precision Medicine Offerings
Biomarker assays to enable precision medicine and risk assessment, mass spec-based tests designed for use in clinical labs large and small, and liquid biopsy technology captured the spotlight at the AACC annual meeting.
Diagnosing Bacterial Infections in Blood Samples
Researchers have diagnosed a bacterial infection from a blood sample in infants.
Neurodvelopmental Disorder Cause Linked to SON Gene
A genetic link has been discovered for a previously unxplained neurodevelopmental disorder.
World's Most In-Depth Study to Detect Alzheimer's Disease
A multisite team will see the most thorough and vigorous testing for Alzheimer's ever performed on volunteers.
Personalised Medicine: Dose by Design
Personalised medicine holds the promise of a new approach to healthcare, tailored exactly to our individual needs, as Congenica's Nick Lench discussed on a recent BBC Radio 4 programme.
Misdiagnosis in HCM Tests
Genetic tests for potentially fatal heart anomaly can misdiagnose condition in black Americans.
Computers Better Predict Lung Cancer Type, Severity
Study shows automating the analysis of cancer tissue samples increases the accuracy of tumor classification and patient prognoses.
Examining New Hypotheses for Undiagnosed Patients
UnDx Consortium gathers in San Diego to create new paths to identifying currently undiagnosed illnesses.
Automating Genetic Analysis
Researchers are looking to have computers help perform genetic analysis when scientists study a patient's genome to diagnose a disease.
Understanding Tumor Evolution
Study provides insight into tumor evolution; may point to improved diagnosis and treatment.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!