Corporate Banner
Satellite Banner
Food & Beverage Analysis
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Oxygen Starvation Regulates Fat Cells in Obesity

Published: Monday, September 30, 2013
Last Updated: Monday, September 30, 2013
Bookmark and Share
Studies of the effects of oxygen deprivation in the body fat of obese animals have revealed links with the regulation of fat cell generation.

Researchers at Kanazawa University have identified the role of the protein TIS7 in processes that regulate adipogenesis, whereby non-specialised cells become adipose or fat cells. They add, “TIS7 could be a target for the discovery and development of a drug useful for the treatment and therapy of obesity or a variety of obesity-related metabolic diseases including type-2 diabetes and atherosclerosis.”

Adipose tissue is essential for whole body homeostasis, storing excess energy and potentially a number of other physiological processes. Deregulation of these functions is found in obesity, prompting further study of the mechanisms behind white adipose tissue development.

Adipose tissue is poorly oxygenated in obese humans and animals. Poor oxygenation or ‘hypoxia’ has been linked to a number of diseases including heart and lung disorders, anemia, and circulation problems. There have also been reports indicating that the protein TIS7 is expressed in tissues following injuries, such as ischemia, stroke or muscle trauma. Yukio Yoneda and colleagues at the University of Kanazawa monitored TIS7 expression in vitro and found that it was drastically increased by hypoxic stress.

The researchers then compared mice fed different diets and found significant up-regulation of TIS7 in the white adipose tissue of mice fed a high fat diet. Following further studies of various aspects of adipogenesis and the role of hypoxia and TIS7, the researchers conclude, “It thus appears that TIS7 is a novel pivotal transcriptional regulator of hypoxia-induced repression of adipogenesis.” They add that further studies are needed to understand the exact mechanism underlying the up-regulation of TIS7 under hypoxia in cells prior to adipogenesis.

Publication and Affiliation

Yukari Nakamura 1, Eiichi Hinoi 1, Takashi Iezaki, Saya Takada, Syota Hashizume, Yoshifumi Takahata, Emiko Tsuruta, Satoshi Takahashi, Yukio Yoneda *

Repression of adipogenesis through promotion of Wnt/β-catenin signaling by TIS7 up-regulated in adipocytes under hypoxia. Biochimica et Biophysica Acta 1832 (2013) 1117–1128

1. Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School,Kanazawa, Ishikawa 920-1192, Japan

*corresponding author, e-mail address: yyoneda@p.kanazawa-u.ac.jp

1 These authors equally contributed to this work.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
How To Keep Your Rice Arsenic-Free
Researchers at Queen’s University Belfast have made a breakthrough in discovering how to lower worrying levels of arsenic in rice that is eaten all over the world.
Pesticide Found in 70 Percent of Massachusetts’ Honey Samples
New Harvard University study says that the pesticide commonly found in honey samples is implicated in Colony Collapse Disorder.
Printed "Smart Cap" Detects Spoiled Food
It might not be long before consumers can just hit “print” to create an electronic circuit or wireless sensor in the comfort of their homes.
Red Wine Antioxidant May Provide New Cancer Therapy Options
Resveratrol and quercetin, two polyphenols that have been widely studied for their health properties, may soon become the basis of an important new advance in cancer treatment,
New Research will Show How the Environment Could Change the Way We Eat
A new study funded by the Wellcome Trust will investigate how environmental changes over the next 20-30 years may impact the way we eat, in the UK and worldwide.
Blue LEDs Can be Used to Preserve Food
Blue light emitting diodes (LEDs) have strong antibacterial effect on major foodborne pathogens and can be used as a chemical-free food preservation method, a new study has found.
FDA Declares Trans Fatty Acids Unsafe for Consumption
TFAs are widely recognized as the most harmful fat with regard to causing cardiovascular disease (CVD).
Fat, Sugar Cause Bacterial Changes that may Relate to Loss of Cognitive Function
A study has indicated that both a high-fat and a high-sugar diet, compared to a normal diet, cause changes in gut bacteria that appear related to a significant loss of "cognitive flexibility," or the power to adapt and adjust to changing situations.
How Anthrax Spores Grow in Cultured Human Tissues
New findings to help predict risk and outcomes of anthrax attacks.
Food Research at the Microscale
Thermal stage microscopy allows food science microscopists to analyze samples under a range of conditions.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!