Corporate Banner
Satellite Banner
Food & Beverage Analysis
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Honeybees' Foraging for Flowers Masked by Diesel Fumes

Published: Tuesday, October 08, 2013
Last Updated: Tuesday, October 08, 2013
Bookmark and Share
Exposure to common air pollutants found in diesel exhaust pollution can affect the ability of honeybees to recognise floral odours, new University of Southampton research shows.

Honeybees use floral odours to help locate, identify and recognise the flowers from which they forage. 

The Southampton team, led by Dr Tracey Newman and Professor Guy Poppy, found that diesel exhaust fumes change the profile of flora odour. They say that these changes may affect honeybees’ foraging efficiency and, ultimately, could affect pollination and thus global food security.

Published in Scientific Reports the study mixed eight chemicals found in the odour of oil rapeseed flowers with clean air and with air containing diesel exhaust. Six of the eight chemicals reduced (in volume) when mixed with the diesel exhaust air and two of them disappeared completely within a minute, meaning the profile of the chemical mix had completely changed. The odour that was mixed with the clean air was unaffected.

Furthermore, when the researchers used the same process with NOx gases (nitric oxide and nitrogen dioxide), which is found in diesel exhaust, they saw the same outcome, suggesting that NOx was a key facilitator in how and why the odour’s profile was altered. The changed chemical mix was then shown to honeybees, which could not recognise it.

Dr Newman, a neuroscientist at the University, comments: “Honeybees have a sensitive sense of smell and an exceptional ability to learn and memorize new odours. NOx gases represent some of the most reactive gases produced from diesel combustion and other fossil fuels, but the emissions limits for nitrogen dioxide are regularly exceeded, especially in urban areas. Our results suggest that that diesel exhaust pollution alters the components of a synthetic floral odour blend, which affects the honeybee’s recognition of the odour. This could have serious detrimental effects on the number of honeybee colonies and pollination activity.”

Professor Poppy, an ecologist at the University, adds: “Honeybee pollination can significantly increase the yield of crops and they are vital to the world’s economy - £430 million a year to the UK alone. However to forage effectively they need to be able to learn and recognize the plants. The results indicate that NOx gases — particularly nitrogen dioxide — may be capable of disrupting the odour recognition process that honeybees rely on for locating floral food resources. Honeybees use the whole range of chemicals found in a floral blend to discriminate between different blends, and the results suggest that some chemicals in a blend may be more important than others.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

£1.4M Funding to Safeguard Global Food Security
Researchers are part of a project that has received £1.4 million in new funding to explore how plants manipulate soils to extract more water and nutrients.
Wednesday, October 15, 2014
Sensor Detects Harmful Bacteria on Food Industry Surfaces
A new device designed to sample and detect foodborne bacteria is being trialled by scientists at the University of Southampton.
Thursday, June 26, 2014
Scientific News
Investigating Bacteria in Raw Milk
A microbial study of milk trucks aims to improve dairy food safety and quality.
FDA Isolates Hepatitis A Outbreak Origin
The FDA and CDC are aiding the Hawaii Department of Health investigation into hepatitis A virus (HAV) infections linked to imported scallops.
MRSA – Just Add Salt
Scientists have discoved a new way to attack Staphylococcus aureus through salt content mechanisms
Frankfurter Fraud: Finding Out What’s In Your Hot Dog
Scientists have developed a technique to test the meat content of Frankfurters.
How Cloud Connectivity Can Combat the Reproducibility Crisis
This infographic explains the reproducibility crisis, and how cloud connectivity can help overcome this problem.
Genome Sequencing May Help Avert Banana Armageddon
Researchers at the University of California, Davis, and in the Netherlands have discovered how three fungal diseases have evolved into a lethal threat to the world’s bananas.
EMA: Reduce Colistin Use in Animals
The EMA has updated its 2013 advice on the use in animals of colistin.
Food Risk Assessment: Malachite Green
EFSA’s Panel on Contaminants in the Food Chain assessed the risks to consumers from malachite green in food.
Stats Improve Insight of Nanoparticle Risks
Study concuded that through statistical methods it is possible to improve the risk assessment of nanoparticles.
BMAA Implicated in Neuro-Diseases
The neurotoxin BMAA is suspected to play a role in Alzheimer’s and Parkinson’s disease.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!