Corporate Banner
Satellite Banner
Food & Beverage Analysis
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

How Bacteria with a Sweet Tooth May Keep us Healthy

Published: Wednesday, October 30, 2013
Last Updated: Wednesday, October 30, 2013
Bookmark and Share
Some gut bacterial strains are specifically adapted to use sugars in our gut lining to aid colonisation, potentially giving them a major influence over our gut health.

New findings from the BBSRC strategically-funded Institute of Food Research, are providing insights into the interaction between bacteria and mucins, proteins which form mucus, and how these interactions affect our health.

Dr Nathalie Juge and her team at the IFR have shown that the ability to use mucins in the human gut varies between different gut bacteria strains. Their study was published in the journal PLOS ONE.

We live in a symbiotic relationship with trillions of bacteria in our gut. They help us digest food, prime our immune system and keep out pathogens. In return we provide a suitable environment for them to grow, including a layer of mucus that coats the gut lining. Mucus is formed from proteins called mucins that have sugars associated with them. These form a diverse and complex range of structures. Mucins provide attachment sites and a source of nutrition for some bacteria, but not all species are allowed to take advantage of this. The complexity of the sugar structures in the mucins is thought to be how our bodies specify which bacteria can set up home, but exactly how this works isn't yet known.

The IFR researchers looked at Ruminococcus gnavus. This is a common species of gut bacteria found in over 90% of people, including infants just a few days old. It has also been implicated in gut-related health conditions. A number of studies have shown that patients suffering from Inflammatory Bowel Diseases have a disproportionate representation of R. gnavus.

This study looked at two different R. gnavus strains. Although both R. gnavus strains can use mucins, only one had the ability to survive when mucins were the sole source of food.
Comparing the genomes of the R. gnavus strains identified gene clusters used to breakdown mucins.

Differences in these genes explain the different abilities of the strains to use mucins. The mucin sugar structures change in different parts of the gut and over time, suggesting the strains may be adapted for different environments or to colonise us at different times.

For example, the R. gnavus strain adapted to survive solely on mucins may give it the ability to colonise the guts of newborn babies, when mucins represent the only sources of sugars for bacteria. In adults, the strains of bacteria that degrade mucins are the ones most likely to contact the cells underneath the mucus and so these strains are the ones most likely to influence health.

A better understanding of which strains use mucins and exactly how they do this will give us new insights into what makes a healthy gut bacteria population, and how fluctuations from this might link to gut diseases like Crohn's disease and ulcerative colitis.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

A New £81.6M Food and Health Research Centre
The Quadram Institute is the name of the new centre for food and health research to be located at the heart of the Norwich Research Park, one of Europe’s largest single-site concentrations of research in food, health and environmental sciences.
Wednesday, February 17, 2016
Global Food Security (GFS) Develops New Funding Programme
New programme of research to tackle resilience of the food system.
Tuesday, June 02, 2015
£4M to Fund Important Food Crops from BBSRC and NERC
Research projects designed with industry partners to maximize impact.
Tuesday, June 02, 2015
Rising Temperatures Predicted to Lower Wheat Yields
An international consortium of researchers has used big data sets to predict the effects climate change on global wheat yields.
Friday, December 26, 2014
New Test For Detecting Horse Meat
New test compares differences in chemical compositions of the fat found in meats.
Tuesday, December 02, 2014
UK Diet and Health Research Awarded £4M
Funding awarded to six projects investigating diet and health to enable the food and drink industry to meet the needs of UK consumers.
Wednesday, June 25, 2014
A Synthetic Biology Approach to Improve Photosynthesis
Assembling a compartment inside chloroplasts of flowering plants has the potential to improve the efficiency of photosynthesis.
Friday, May 16, 2014
Rothamsted Research Granted Permission for new GM Field Trial
Permission granted by Defra for Rothamsted to carry out a field trial with GM Camelina plants that produce omega-3 fish oils in their seeds.
Monday, April 28, 2014
How Bacteria Communicate with us to Build a Special Relationship
Research is a key step in understanding how our bodies maintain a close relationship with the population of gut bacteria.
Monday, February 17, 2014
New Funding to Create Healthier and Safer Food
BBSRC and the Technology Strategy Board invests £8.5M in almost 40 research projects.
Wednesday, February 05, 2014
More than Bread and Beer: the National Collection of Yeast Cultures
Yeasts are one of the earliest, if not the earliest, biological tools used by people.
Thursday, November 28, 2013
Crop Plants – "Green Factories" for Fish Oils
Rothamsted Research scientists develop Camelina sativa plants that accumulate high levels of Omega-3 oils EPA and DHA in their seeds.
Monday, November 25, 2013
New Chromosome Map Points the Way Through Campylobacter’s Genetic Controls
The Institute of Food Research has produced a new map of the Campylobacter genome, showing the points where all of this pathogenic bacteria's genes are turned on.
Wednesday, November 13, 2013
Improved Ways of Testing Meat in the Food Chain
The horsemeat scandal has shown there is a need to improve, increase and expand current authenticity testing regimes.
Tuesday, November 12, 2013
Vaccinating Cattle Against E. coli Could Drastically Cut Human Cases
A recent study has shown that vaccinating cattle against the E. coli O157 bacterium could cut the number of human cases of the disease by 85%.
Friday, September 20, 2013
Scientific News
Detecting Fake Parmesan Cheeses
Scientists report on a way to catch adulteration of the regional artisanal products.
Cancer-Fighting Properties Of Horseradish Revealed
Horseradish contains cancer-fighting compounds known as glucosinolates. Glucosinolate type and quantity vary depending on size and quality of the horseradish root. For the first time, the activation of cancer-fighting enzymes by glucosinolate products in horseradish has been documented.
Process Analysis in Real Time
With a real-time mass spectrometer developed by Fraunhofer researchers, it has become possible for the first time to analyze up to 30 components simultaneously from the gas phase and a liquid, including in-situ analysis.
An E.coli Detector May be in Your Hands Soon
Hand-held device that can be used to detect a variety of pathogens—including foodborne pathogens like E. coli—at all stages in the food supply chain, from fields to restaurants may be available soon.
Three Quarters of the Population Believe That Food in Germany is Safe
According to the latest survey results, consumers rate climate change and / or environmental pollution as the most significant risks to health.
Why do Tomatoes Smell "Grassy"?
Researchers identify enzymes that convert the grassy smell of tomatoes into a sweeter scent.
Compounds Found in Fruits Could Treat Diseases
Fruit discovery could provide new treatments for obesity, type 2 diabetes and cardiovascular disease.
Sticky Molecules to Tackle Obesity and Diabetes
Researchers at Okayama University have reported that the overexpression of an adhesion molecule found on the surface of fat cells appears to protect mice from developing obesity and diabetes.
Process Contaminants in Vegetable Oils and Foods
Glycerol-based process contaminants found in palm oil, but also in other vegetable oils, margarines and some processed foods, raise potential health concerns for average consumers of these foods in all young age groups, and for high consumers in all age groups.
Apricot Kernels Pose Risk of Cyanide Poisoning
Eating more than three small raw apricot kernels, or less than half of one large kernel, in a serving can exceed safe levels. Toddlers consuming even one small apricot kernel risk being over the safe level.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!