Corporate Banner
Satellite Banner
Food & Beverage Analysis
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Laser Tool Speeds up Detection of Salmonella in Food Products

Published: Sunday, February 16, 2014
Last Updated: Friday, February 21, 2014
Bookmark and Share
Purdue University researchers have developed a laser sensor that can identify Salmonella bacteria grown from food samples about three times faster than conventional detection methods.

Known as BARDOT, the machine scans bacteria colonies and generates a distinct black and white "fingerprint" by which they can be identified. BARDOT takes less than 24 hours to pinpoint Salmonella.

"BARDOT allows us to detect Salmonella much earlier and more easily than current methods," said Arun Bhunia, a professor of food science who collaborated with then-Purdue engineer Daniel Hirleman to create the machine. "This could ultimately help provide safer food to consumers."

Salmonella is a major foodborne pathogen that causes salmonellosis, a type of food poisoning with symptoms of diarrhea, fever and abdominal cramps. Salmonellosis can be fatal in young children, the elderly and those with compromised immune systems.

The U.S. Food and Drug Administration has a zero-tolerance policy for Salmonella in food products. If the bacteria is detected, the resulting product recalls can lead to significant financial loss and possible charges of criminal liability for the companies involved.

Current Salmonella detection methods can take 72 hours to yield results and often require artificial alteration of the bacteria colonies. But the BARDOT system

identifies bacteria colonies by using light to illuminate their natural characteristics, preserving the colonies for later study. The machine can be operated with minimal training and used in locations with limited resources, Bhunia said.

BARDOT, short for "bacterial rapid detection using optical scatter technology," uses a red diode laser to scan bacteria colonies on an agar plate. When the light penetrates a colony, it produces a scatter pattern, a unique arrangement of rings and spokes that resembles the iris of an eye. The pattern is matched against a library of images to identify the type of bacteria.

To test BARDOT's ability to identify Salmonella, Bhunia and his fellow researchers grew bacteria from rinses of contaminated chicken, spinach and peanut butter on agar plates for about 16 hours. After the plates were covered with tiny spherical colonies of bacteria, they placed each plate inside BARDOT - which is about the size of a large microwave oven - and scanned the colonies.

BARDOT identified Salmonella bacteria with an accuracy of 95.9 percent. It also individually distinguished eight of the most prevalent Salmonella serovars - distinct variations within a species of bacteria. Identifying a particular serovar helps trace bacteria to the original source of contamination.

Atul Singh, postdoctoral research associate and first author of the study, said BARDOT could be an effective preliminary screening tool, especially for food processors testing a large number of samples.

"BARDOT screens quickly and inexpensively," he said. "If you get a positive result for Salmonella, you can do a follow-up test. This can help food processors make more informed decisions."

While many tools can only detect a single kind of bacteria, BARDOT picks out multiple types of disease-causing bacteria on a plate with a single scan, Bhunia said. In addition to Salmonella, BARDOT can identifyEscherichia coli, Vibrio, Listeria, Bacillus and many more foodborne pathogens.

"That's the beauty of this system," Bhunia said. "It's so versatile. It can find organisms that you didn't even think about."

The paper was published in mBio and is available at http://mbio.asm.org/content/5/1/e01019-13

Lixia Liu, Brent Barrett, Mark Forster and Judith Lovchik of the Indiana State Department of Health also collaborated on the study.

The research was conducted using funds from the U.S. Department of Agriculture, the National Institute of Allergy and Infectious Diseases and the Center for Food Safety Engineering at Purdue.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Device Speeds Concentration Step in Food-Pathogen Detection
Researchers have developed a system that concentrates foodborne salmonella and other pathogens faster than conventional methods.
Monday, October 21, 2013
In-Package Plasma Process Quickly, Effectively Kills Bacteria
Exposing packaged liquids, fruits and vegetables to an electrical field for just minutes might eliminate all traces of foodborne pathogens on those foods, according to a Purdue University study.
Thursday, April 18, 2013
Scientific News
How To Keep Your Rice Arsenic-Free
Researchers at Queen’s University Belfast have made a breakthrough in discovering how to lower worrying levels of arsenic in rice that is eaten all over the world.
Pesticide Found in 70 Percent of Massachusetts’ Honey Samples
New Harvard University study says that the pesticide commonly found in honey samples is implicated in Colony Collapse Disorder.
Printed "Smart Cap" Detects Spoiled Food
It might not be long before consumers can just hit “print” to create an electronic circuit or wireless sensor in the comfort of their homes.
Red Wine Antioxidant May Provide New Cancer Therapy Options
Resveratrol and quercetin, two polyphenols that have been widely studied for their health properties, may soon become the basis of an important new advance in cancer treatment,
New Research will Show How the Environment Could Change the Way We Eat
A new study funded by the Wellcome Trust will investigate how environmental changes over the next 20-30 years may impact the way we eat, in the UK and worldwide.
Blue LEDs Can be Used to Preserve Food
Blue light emitting diodes (LEDs) have strong antibacterial effect on major foodborne pathogens and can be used as a chemical-free food preservation method, a new study has found.
FDA Declares Trans Fatty Acids Unsafe for Consumption
TFAs are widely recognized as the most harmful fat with regard to causing cardiovascular disease (CVD).
Fat, Sugar Cause Bacterial Changes that may Relate to Loss of Cognitive Function
A study has indicated that both a high-fat and a high-sugar diet, compared to a normal diet, cause changes in gut bacteria that appear related to a significant loss of "cognitive flexibility," or the power to adapt and adjust to changing situations.
How Anthrax Spores Grow in Cultured Human Tissues
New findings to help predict risk and outcomes of anthrax attacks.
Food Research at the Microscale
Thermal stage microscopy allows food science microscopists to analyze samples under a range of conditions.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!