Corporate Banner
Satellite Banner
Food & Beverage Analysis
Scientific Community
Become a Member | Sign in
Home>News>This Article

Laser Tool Speeds up Detection of Salmonella in Food Products

Published: Sunday, February 16, 2014
Last Updated: Friday, February 21, 2014
Bookmark and Share
Purdue University researchers have developed a laser sensor that can identify Salmonella bacteria grown from food samples about three times faster than conventional detection methods.

Known as BARDOT, the machine scans bacteria colonies and generates a distinct black and white "fingerprint" by which they can be identified. BARDOT takes less than 24 hours to pinpoint Salmonella.

"BARDOT allows us to detect Salmonella much earlier and more easily than current methods," said Arun Bhunia, a professor of food science who collaborated with then-Purdue engineer Daniel Hirleman to create the machine. "This could ultimately help provide safer food to consumers."

Salmonella is a major foodborne pathogen that causes salmonellosis, a type of food poisoning with symptoms of diarrhea, fever and abdominal cramps. Salmonellosis can be fatal in young children, the elderly and those with compromised immune systems.

The U.S. Food and Drug Administration has a zero-tolerance policy for Salmonella in food products. If the bacteria is detected, the resulting product recalls can lead to significant financial loss and possible charges of criminal liability for the companies involved.

Current Salmonella detection methods can take 72 hours to yield results and often require artificial alteration of the bacteria colonies. But the BARDOT system

identifies bacteria colonies by using light to illuminate their natural characteristics, preserving the colonies for later study. The machine can be operated with minimal training and used in locations with limited resources, Bhunia said.

BARDOT, short for "bacterial rapid detection using optical scatter technology," uses a red diode laser to scan bacteria colonies on an agar plate. When the light penetrates a colony, it produces a scatter pattern, a unique arrangement of rings and spokes that resembles the iris of an eye. The pattern is matched against a library of images to identify the type of bacteria.

To test BARDOT's ability to identify Salmonella, Bhunia and his fellow researchers grew bacteria from rinses of contaminated chicken, spinach and peanut butter on agar plates for about 16 hours. After the plates were covered with tiny spherical colonies of bacteria, they placed each plate inside BARDOT - which is about the size of a large microwave oven - and scanned the colonies.

BARDOT identified Salmonella bacteria with an accuracy of 95.9 percent. It also individually distinguished eight of the most prevalent Salmonella serovars - distinct variations within a species of bacteria. Identifying a particular serovar helps trace bacteria to the original source of contamination.

Atul Singh, postdoctoral research associate and first author of the study, said BARDOT could be an effective preliminary screening tool, especially for food processors testing a large number of samples.

"BARDOT screens quickly and inexpensively," he said. "If you get a positive result for Salmonella, you can do a follow-up test. This can help food processors make more informed decisions."

While many tools can only detect a single kind of bacteria, BARDOT picks out multiple types of disease-causing bacteria on a plate with a single scan, Bhunia said. In addition to Salmonella, BARDOT can identifyEscherichia coli, Vibrio, Listeria, Bacillus and many more foodborne pathogens.

"That's the beauty of this system," Bhunia said. "It's so versatile. It can find organisms that you didn't even think about."

The paper was published in mBio and is available at

Lixia Liu, Brent Barrett, Mark Forster and Judith Lovchik of the Indiana State Department of Health also collaborated on the study.

The research was conducted using funds from the U.S. Department of Agriculture, the National Institute of Allergy and Infectious Diseases and the Center for Food Safety Engineering at Purdue.

Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,200+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

A Future Tool for Medicine, Food Safety
A new type of electronic sensor that might be used to quickly detect and classify bacteria for medical diagnostics and food safety has passed a key hurdle by distinguishing between dead and living bacteria cells.
Wednesday, June 15, 2016
Identifying Foodborne Pathogens
A Purdue University innovation that creates a "fingerprint-like pattern" to identify foodborne pathogens without using reagents has been licensed by Hettich Lab Technology.
Wednesday, March 02, 2016
Device Speeds Concentration Step in Food-Pathogen Detection
Researchers have developed a system that concentrates foodborne salmonella and other pathogens faster than conventional methods.
Monday, October 21, 2013
In-Package Plasma Process Quickly, Effectively Kills Bacteria
Exposing packaged liquids, fruits and vegetables to an electrical field for just minutes might eliminate all traces of foodborne pathogens on those foods, according to a Purdue University study.
Thursday, April 18, 2013
Scientific News
Questioning the Safety of Selenium to Combat Cancer
Research indicates the need for change in practice as selenium supplements cannot be recommended for preventing colorectal cancer.
Food Analysis Applications of Core-Shell Columns in HPLC
Despite applications of core-shell particles columns in food analysis being at an early stage, articles describing their use for improving separations of several classes of compounds are becoming more frequent.
Cocoa Compound Linked to Some Cardiovascular Biomarker Improvements
The study highlights the urgent need for large, long-term RCTs that improve understanding of how the short-term benefits of cocoa flavanol intake on cardiometabolic biomarkers may be translated into clinical outcomes.
Desalinated Sea Water Linked to Iodine Deficiency Disorders
Study suggests that desalination can dramatically increase the prevalence of inadequate iodine intake.
3D-Printing in Science: Conference Co-Staged with LABVOLUTION
LABVOLUTION 2017 will have an added highlight of a simultaneous conference, "3D-Printing in Science".
A New Technique to Beat the Food Fraudsters
Shoppers can be more confident that their burgers are the real deal following a new method of testing for meat fraud developed at the Institute of Food Research on the Norwich Research Park.
Antibiotic Resistance Can Occur Naturally in Soil Bacteria
Scientists have found natural anti-biotic resistant bacteria in soils with little to no human exposure.
Eggs from Small Flocks More Likely to Contain Salmonella
Penn State study suggests that eggs from small local enterprises are not safer to eat than “commercially produced” eggs.
Using X-rays to Figure Out Fats
Scientists trying to replace food fats with non-saturated versions are looking to x-rays to aid them.
Feeding Babies Egg and Peanut May Prevent Food Allergy
The new analysis pools all existing data, and suggests introducing egg and peanut at an early age may prevent the development of allergy.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,200+ scientific videos