Corporate Banner
Satellite Banner
Food & Beverage Analysis
Scientific Community
Become a Member | Sign in
Home>News>This Article

Salmonella Relies on Single Food Source to Stay Potent

Published: Saturday, July 12, 2014
Last Updated: Wednesday, July 23, 2014
Bookmark and Share
Study suggests genes needed for nutrient could be attractive drug target to fight infection.

Scientists have identified a potential Achilles’ heel for Salmonella – the bacteria’s reliance on a single food source to remain fit in the inflamed intestine.

When these wily bugs can’t access this nutrient, they become 1,000 times less effective at sustaining disease than when they’re fully nourished.

The research suggests that blocking activation of one of five genes that transport the nutrient toSalmonella cells could be a new strategy to fight infection.

“For some reason, Salmonella really wants this nutrient, and if it can’t get this one, it’s in really bad shape,” said Brian Ahmer, associate professor of microbial infection and immunity at The Ohio State University and lead author of the study. “If you could block Salmonella from getting that nutrient, you’d really stopSalmonella.”

The research is published in the journal PLOS Pathogens.

Generally, most of the 42,000 Americans who report Salmonella infection annually ride out the gastroenteritis symptoms of diarrhea, fever, stomach cramps and vomiting for four to seven days, according to the Centers for Disease Control and Prevention. Antibiotics aren’t a recommended treatment for most infections because they kill good gut bacteria along with Salmonella.

The nutrient needed by Salmonella is composed of a sugar and amino acid stuck together, and is called fructose-asparagine. Its identification alone is also unusual: “It has never been discovered to be a nutrient for any organism,” Ahmer said.

Ahmer and colleagues found this important food source by first identifying the genes that Salmonellarequires to stay alive during the active phase of gastroenteritis, when the inflamed gut produces symptoms of infection.

Using a genetic screening technique, the researchers found a cluster of five genes that had to be expressed to keep Salmonella from losing its fitness during gastroenteritis. They then determined that those vital genes work together to transport a nutrient into the bacterial cell and chop up the nutrient so it can be used as food.

The study refers to the pathogen’s fitness because it’s an all-encompassing word for Salmonellasurvival, growth and ability to inflict damage.

Identifying the nutrient that the genes acted upon was a bit tricky and involved some guessing, Ahmer said. The team realized that the Salmonella genes they found resembled genes in other bacteria with a similar function – transporting the nutrient fructose-lysine into E. coli. But seeing a difference between the genes, the researchers landed, with some luck, on fructose-asparagine.

The researchers ran numerous experiments in cell cultures and mice to observe what happened to Salmonella in the inflamed gut when these genes were mutated. Under differing conditions,Salmonella’s fitness dropped between 100- and 10,000-fold if it could not access fructose-asparagine, even if all of its other food sources were available.

“That was one of the big surprises: that there is only one nutrient source that is so important toSalmonella. For most bacteria, if we get rid of one nutrient acquisition system, they continue to grow on other nutrients,” Ahmer said. “In the gut, Salmonella can obtain hundreds of different nutrients. But without fructose-asparagine, it’s really unfit.”

Because of that sole source for survival, the genes needed for acquisition of this nutrient could be effective drug targets.

“Nobody’s ever looked at nutrient transporters as drug targets because it’s assumed that there will be hundreds more transporters, so it’s a pointless pursuit,” Ahmer said.

This kind of drug also holds promise because it would affect only Salmonella and leave the trillions of other microbes in the gut unaffected.

Ahmer and colleagues are continuing this work to address remaining questions, including the window of time in which access to the nutrient is most important for Salmonella’s survival as well as identifying human foods that contain high concentrations of fructose-asparagine.

This work was supported by grants from the National Institute of Allergy and Infectious Diseases and the National Institute of General Medical Sciences.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
The MaxSignal Colistin ELISA Test Kit from Bioo Scientific
Kit can help prevent the antibiotic apocalypse by keeping last resort drugs out of the food supply.
Kitchen Utensils Can Spread Bacteria Between Foods
In a recent study researchers found that produce that contained bacteria would contaminate other produce items through the continued use of knives or graters—the bacteria would latch on to the utensils commonly found in consumers' homes and spread to the next item.
GMO Food Animals Should be Judged by Product, Not Process
In a world with a burgeoning demand for meat, milk and eggs, regulatory policies around the use of biotechnologies in agriculture need to be based on the safety and attributes of those foods rather than on the methods used to produce them, says a UC Davis animal scientist.
Acetaldehyde and Formaldehyde Content in Foods
Korean researchers have determined the content of the toxic and carcinogenic aldehydes, acetaldehyde and formaldehyde, in a variety of food groups.
Increasing Vitamin D Supplementation
New study from ETH Zurich finds that elderly women should consume more vitamin D than previously recommended during the winter months.
IARC Monographs Evaluate Consumption of Red Meat and Processed Meat
Processed meat eaten daily increases the risk of colorectal cancer by 18%.
Nanoparticles in Foods Raise Safety Questions
Nanoparticles can make foods like jawbreaker candies brighter and creamier and keep them fresh longer. But researchers are still in the dark about what the tiny additives do once inside our bodies.
Arsenic Found in Many U.S. Red Wines
A new University of Washington study that tested 65 wines from America’s top four wine-producing states — California, Washington, New York and Oregon — found all but one have arsenic levels that exceed what’s allowed in drinking water.
Viruses Join Fight Against Harmful Bacteria
Engineered viruses could combat human disease and improve food safety.
Plastic for Dinner
Roughly a quarter of the fish sampled from fish markets in California and Indonesia contained man-made debris according to a study from the University of California, Davis, and Hasanuddin University in Indonesia.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos