Corporate Banner
Satellite Banner
Forensic Science & Clinical Toxicology
Scientific Community
Become a Member | Sign in
Home>News>This Article

Ancient DNA Unravels Europe's Genetic Diversity

Published: Monday, October 21, 2013
Last Updated: Monday, October 21, 2013
Bookmark and Share
Ancient DNA recovered from a time series of skeletons in Germany has been used to reconstruct the first detailed genetic history of modern-day Europeans.

The study, published today in Science, reveals dramatic population changes with waves of prehistoric migration, not only from the accepted path via the Near East, but also from Western and Eastern Europe.

The research was a collaboration between the Australian Centre for Ancient DNA (ACAD), at the University of Adelaide, researchers from the University of Mainz, the State Heritage Museum in Halle (Germany), and National Geographic Society's Genographic Project. The teams used mitochondrial DNA (maternally inherited DNA) extracted from bone and teeth samples from 364 prehistoric human skeletons - ten times more than previous ancient DNA studies.

"This is the largest and most detailed genetic time series of Europe yet created, allowing us to establish a complete genetic chronology," says joint-lead author Dr Wolfgang Haak of ACAD. "Focussing on this small but highly important geographic region meant we could generate a gapless record, and directly observe genetic changes in 'real-time' from 7,500 to 3,500 years ago, from the earliest farmers to the early Bronze Age."

"Our study shows that a simple mix of indigenous hunter-gatherers and the incoming Near Eastern farmers cannot explain the modern-day diversity alone," says joint-lead author Guido Brandt, PhD candidate at the University of Mainz. "The genetic results are much more complex than that. Instead, we found that two particular cultures at the brink of the Bronze Age 4,200 years ago had a marked role in the formation of Central Europe's genetic makeup."

Professor Kurt Alt (University of Mainz) says: "What is intriguing is that the genetic signals can be directly compared with the changes in material culture seen in the archaeological record. It is fascinating to see genetic changes when certain cultures expanded vastly, clearly revealing interactions across very large distances." These included migrations from both Western and Eastern Europe towards the end of the Stone Age, through expanding cultures such as the Bell Beaker and the Corded Ware (named after their pots).

"This transect through time has produced a wealth of information about the genetic history of modern Europeans," says ACAD Director Professor Alan Cooper. "There was a period of stasis after farming became established and suitable areas were settled, and then sudden turnovers during less stable times or when economic factors changed, such as the increasing importance of metal ores and secondary farming products. While the genetic signal of the first farming populations becomes increasingly diluted over time, we see the original hunter-gatherers make a surprising comeback."

Dr Haak says: "None of the dynamic changes we observed could have been inferred from modern-day genetic data alone, highlighting the potential power of combining ancient DNA studies with archaeology to reconstruct human evolutionary history." The international team has been working closely on the genetic prehistory of Europeans for the past 7-8 years and is currently applying powerful new technologies to generate genomic data from the specimens.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Better DNA Analysis for Catching Criminals
A simple, lower-cost new method for DNA profiling of human hairs developed by the University of Adelaide should improve opportunities to link criminals to serious crimes.
Tuesday, July 21, 2015
Detecting Trace Amounts of Explosives With Light
The sensor that can detect tiny quantities of explosives with the use of light and special glass fibres.
Saturday, May 10, 2014
Scientific News
Questioning the Validity of Forensic DNA Match Statistic
Fifteen years of criminal cases with affected mixture evidence.
Study Raises Questions About DNA Evidence
University of Indianapolis researchers say contamination through secondary transfer of material could implicate the innocent or help the guilty go free.
'Forensic Toolkit’ to Improve Evidence Detection and Analysis
Students from The University of Dundee have been developing a forensic `toolkit’ that will allow investigators to determine the age of fingerprints, detect traces of steel on bone from stabbings, and produce a biosensitive spray that can reveal traces of bodily fluids at crime scenes.
Glowing Fingerprints to Fight Crime
A CSIRO scientist who had his home broken into has developed a new crime scene identification technique to help fingerprint criminals.
Forensic Facial Examiners Can Be Near Perfect
In what might be the first face-off of its kind, trained forensics examiners from the FBI and law enforcement agencies worldwide were far more accurate in identifying faces in photographs than nonexperts and even computers.
Ancestral Background Can Be Determined By Fingerprints
A proof-of-concept study finds that it is possible to identify an individual’s ancestral background based on his or her fingerprint characteristics – a discovery with significant applications for law enforcement and anthropological research.
CSI -- On The Metabolite's Trail
Bioinformaticians at the University of Jena make the most efficient search engine for molecular structures available online.
People Emit Their Own Personal Microbial Cloud
We each give off millions of bacteria from our human microbiome to the air around us every day, and that cloud of bacteria can be traced back to an individual.
Blood, Teeth Samples Predict a Criminal's Age
Forensic biomedical scientists from KU Leuven have developed a test to predict individuals’ age on the basis of blood or teeth samples. This test may be particularly useful for the police, as it can help track down criminals or identify human remains.
Contactless Fingerprint Technology is Coming
Quickly moving through security checkpoints by showing your hand to a scanner seems straight out of science fiction, but NIST is working with industry to bring fast, touchless fingerprint readers out of the lab and into the marketplace.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos