Corporate Banner
Satellite Banner
Forensic Science & Clinical Toxicology
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Fluorescent Sensor Detects Date Rape Drug Within Seconds

Published: Tuesday, April 15, 2014
Last Updated: Tuesday, April 15, 2014
Bookmark and Share
The sensor, developed by researchers from the National University of Singapore (NUS), identifies the presence of GHB, a drug known commonly used to spike beverages.

When the sensor is mixed with a sample of a beverage containing GHB, the mixture changes colour in less than 30 seconds, making detection of the drug fast and easy.

This simple mix-and-see discovery, led by Professor Chang Young-Tae of the Department of Chemistry at the NUS Faculty of Science, is a novel scientific breakthrough that contributes towards prevention of drug-facilitated sexual assault problems.

The findings were first published in the journal Chemical Communications earlier this year.

GHB: notorious drug used in drink spiking
Gamma-hydroxybutyric acid, commonly known as GHB, is a central nervous system depressant that has been used in the medical setting as a general anaesthetic. In the 1990s, it gained notoriety as a drug allegedly used in instances of drink spiking. Today, it is one of the most commonly used date rape drugs, rendering the victim incapacitated and vulnerable to sexual assault.

As GHB is odourless, colourless and slightly salty, it is almost undetectable when mixed in a drink, thus making it desirable to sexual predators. A small amount of between two to four grams of GHB will interfere with the motor and speech control of a person, and may even induce a coma-like sleep. GHB takes effect within 15 to 30 minutes, and the effect can last for three to six hours. It is only detectable in urine six to 12 hours after ingestion.

Novel fluorescent sensor to detect GHB
Fluorescent dyes have been widely used as sensors for analytical purposes because of their high sensitivity, fast response time and technical simplicity.

Under the supervision of Prof Chang, the team of researchers, comprising Dr Zhai Duanting, a Research Fellow, Mr Xu Wang, a PhD candidate, as well as Mr Elton Tan, a recent graduate, of the Department of Chemistry at the NUS Faculty of Science, screened 5,500 dyes generated from different fluorescent scaffolds. These fluorescent scaffolds have been used to construct the Diversity Oriented Fluorescence Library (DOFL) that was developed by Prof Chang over the last decade.

The team shortlisted 17 fluorescent compounds and further tested them with a wide range of different GHB concentrations. Through this, the team identified that an orange fluorescent compound, coined GHB Orange, changes colour when it is mixed with GHB.

In order to examine the efficiency of GHB Orange, the team tested its detection capability by mixing a small amount of it with samples of various beverages, ranging from alcoholic, non-alcoholic, coloured and colourless drinks, which contain GHB. The test revealed differences in the fluorescence intensity between GHB-free and GHB-spiked beverages. For drinks that are translucent or of a light colour, such as water or vodka, the change in colour can be easily detected with the naked eye. The change in the colour of darker drinks, such as Cola and whiskey, requires the aid of additional lighting to better detect the change.

Remarkably, this detection can be done through a simple mix-and-see process, which takes less than 30 seconds.

Future plans
While GHB Orange has proven to be efficient in detecting GHB in beverages, there is a need to develop a test kit that is convenient for users to use and carry around. Prof Chang and his team intend to work with industry partners to develop a handy and cheap device for GHB detection.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
World’s Oldest Human Footprints Investigated
Bournemouth University researchers investigate world’s oldest human footprints with software designed to decode crime scenes.
Beating the Backlog in Criminal Investigations
Andrew Sheldon, Chief Technical Officer at UK Digital Forensics specialists Evidence Talks, says there is a way to beat the backlog in processing digital evidence.
Bringing the Lab to the Crime Scene
Developing a miniature mass spectrometer to allow instant analysis of evidence.
Forensic Botany Uses Plant DNA to Trace Crimes
Sam Houston State University is advancing the field of forensic botany with the publication of two recent studies that use marijuana DNA to link drug supplies and pollen DNA to aid in forensic investigations.
First Gene for Grey Hair Found
The first gene identified for greying hair has been discovered by an international UCL-led study, confirming greying has a genetic component and is not just environmental. - See more at: https://www.ucl.ac.uk/news/news-articles/0316/010316-first-grey-hair-gene-discovered#sthash.gD0shNNC.dpuf
Determining 'Patterns' for Bones Left on Ground Surfaces
For the first time, researchers have determined a signature of changes that occur to human remains, specifically bones, left outside in the New England environment.
Forensics Close in on Footwear Analysis
First it was your fingerprint that gave the game away and then DNA analysis transformed forensic science. But ‘watch your step’ because an expert in the School of Physics and Astronomy at The University of Nottingham has developed a new technique which could lead to a ‘step change’ in forensic footwear imaging.
Characterizing the Smell of Death
New research reveals the odor profile of decaying bodies.
New Forensic Methods for Human DNA Cases
Sam Houston State University was awarded a grant from the National Institute of Justice to develop and test the best possible sample preparation methods for skeletal and decomposing human remains using emerging, next-generation DNA technology to identify missing persons or victims of mass disasters.
Portable Kit Can Recover Traces of Chemical Evidence
A chemist at the National Institute of Standards and Technology (NIST) has developed a portable version of his method for recovering trace chemicals such as environmental pollutants and forensic evidence including secret graves and arson fire debris.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!