Corporate Banner
Satellite Banner
Forensic Science & Clinical Toxicology
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Technique Offers Arson Investigators Faster, More Accurate Results

Published: Tuesday, June 17, 2014
Last Updated: Wednesday, June 25, 2014
Bookmark and Share
The new process for analyzing debris for traces of fire accelerants is faster and more accurate than conventional methods and produces less waste.

A research group at the National Institute of Standards and Technology (NIST) has demonstrated a new method for detecting ignitable liquids that could change the way arson fires are investigated. 

An arson investigation typically requires collecting one or two liters of ashes and debris from various locations within a fire scene in metal cans similar to those used for paint, and sending the material to a lab. The testing methods typically include gas and liquid chromatography or various versions of spectroscopy, with gas chromatography being the most widely used in fire debris analysis, according to the lead NIST researcher, Tom Bruno.

When the fire debris is received at the testing facility, samples are taken for testing. Sometimes this will involve suspending a strip with activated charcoal in the air or "headspace" directly above the sample in the paint can for a period of time that can vary, depending on the judgment of the analyst, for 2-3 hours or up to 16 hours.

Other testing methods include "dynamic purge and trap" of the headspace. And still another sampling method involves a newer solid-phase microextraction method (SPME) that does not destroy the sample. This later method, however, has a high displacement rate of heavier over lighter ignitable liquid components, is difficult to automate, makes preserving and archiving samples difficult and has not shown a consistent ability to obtain repeatable and quantitative results. Also, the SPME sampling method requires expensive equipment, and the SPME fibers are easily damaged. Still other methods are less sensitive and produce large amounts of chemical waste.

The vapor collection method developed by Bruno's group involves the dynamic adsorption of headspace vapors on short porous layer open tubular (PLOT) columns maintained at low temperature (as low as -40 C). The benefits of this method are many. The collection sensitivity is high; below 1 part per billion (ppb). The low temperature is achieved using a vortex tube connected to compressed air; it has no moving parts, and is attractive for use in environments with explosive or flammable materials.

After vapor collection, the PLOT capillaries can be heated (up to 160 C, again with the vortex tube), releasing the vapor. The capillaries used are robust and cheap, and this process is especially effective with relatively nonvolatile substances because of its wide operating temperature range. It also is not limited to water-borne samples, as most commercial sampling instruments are. And best of all, this PLOT-cryo method can be used to simultaneously test for up to eight different ignitable liquids from a single sample. This allows investigators to take multiple samples from each of several locations in a fire scene (such as a grid approach) in a short amount of time. This method also enables high repeatability and quality assurance of the testing process and is available in a portable unit that can perform the sampling in remote locations.

"This sampling method is faster, more efficient, recovers more analytics and produces much less waste than traditional methods," Bruno said. "And the sampling device and its components are much cheaper than traditional equipment." While the present study involved samples measured in the laboratory, Bruno has further developed the method to be field portable. A patent is pending for a device that will offer these same vapor collections, even at fire scenes. The self-contained portable unit is carried in a standard briefcase and may be available to arson investigators in as little as two years.

*J.E. Nichols, M.E. Harries, T.M. Lovestead and T.J. Bruno. Analysis of arson fire debris by low temperature dynamic headspace adsorption porous layer open tubular columns. Journal of Chromatography A. Volume 1334, 21 March 21, 2014.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Center for Improving Statistical Analysis of Forensic Evidence
The U.S. Commerce Department’s National Institute of Standards and Technology has awarded Iowa State University up to $20 million over five years to establish a Forensic Science Center of Excellence focused on pattern and digital evidence.
Tuesday, June 09, 2015
NIST, County Crime Lab Team Up on Ballistics Research
Partnership will contribute to a collection of topographic data from thousands of fired bullets and cartridge cases.
Tuesday, August 12, 2014
NIST Names Members of Forensic Science Resource Committees
The new members, selected for their expertise in law, psychology and quality assurance, will serve on three advisory committees.
Thursday, July 17, 2014
NIST Presents an Infrastructure Plan to Strengthen Forensic Science Committees
NIST forensic science experts presented a plan for a new Organization of Scientific Area Committees (OSAC) at the first meeting of the National Commission on Forensic Science in Washington, D.C.
Sunday, February 09, 2014
DoJ and NIST Name Experts to First-Ever National Commission on Forensic Science
Members of the commission will work to improve the practice of forensic science by developing guidance concerning the intersections between forensic science and the criminal justice system.
Sunday, January 12, 2014
Scientific News
DNA Could Put a Face to the Crime in the Future
An Irish geneticist is pioneering forensic techniques that can estimate a person’s appearance from a DNA sample.
Fingerprint Accuracy Stays The Same Over Time
Researchers have shown that fingerprint recognition accuracy remains stable in subjects apprehended multiple times over a period of 5 to 12 years.
Teeth Reveal Lifetime Exposures to Metals, Toxins
Researchers have identified dental biomarkers to reveal links between early iron exposure and late life brain diseases.
Better DNA Analysis for Catching Criminals
A simple, lower-cost new method for DNA profiling of human hairs developed by the University of Adelaide should improve opportunities to link criminals to serious crimes.
The Perfect Partnership: Research & Industry; Software & Instrumentation. It really starts to come together at ASMS 2015
Collaboration and knowledge-sharing were evident everywhere: on the bus, in the hallways and in the bars. This article aims to capture this theme and share with you some of the fruits of this coming together of science and industry.
Are Microbes the Future of Forensic Science?
Forget checking for latent prints or impression evidence, forensic scientists of the future might use skin microbiology to pin a suspect at the crime scene.
New Test Detects Drug Use From A Single Fingerprint
Research published in the journal Analyst has demonstrated a new, non-invasive test that can detect cocaine use through a simple fingerprint.
Potential Forensic Uses for Human Microbiome
A recent study suggests microbial communities found on or in some sites in an individual's body can be used as fingerprint-like identifiers.
Crime Scene Discovery – Separating The DNA Of Identical Twins
Forensic scientist Dr Graham Williams uncovers one of the DNA’s longstanding mysteries.
‘Fracture’ Prints, Not Fingerprints, Help Solve Child Abuse Cases
Much like a finger leaves its own unique print to help identify a person, researchers are now discovering that skull fractures leave certain signatures that can help investigators better determine what caused the injury.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!