Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Stanford Scientist Omics Profile used to Discover, Track his Diabetes Onset

Published: Monday, March 19, 2012
Last Updated: Monday, March 19, 2012
Bookmark and Share
Researchers also spied on Dr Snyder's immune system and watched it battle viral infections.

Geneticist Michael Snyder, PhD, has almost no privacy. For more than two years, he and his lab members at the Stanford University School of Medicine pored over his body’s most intimate secrets: the sequence of his DNA, the RNA and proteins produced by his cells, the metabolites and signaling molecules wafting through his blood.

Finally, to his shock, they discovered that he was predisposed to type-2 diabetes and then watched his blood sugar shoot upward as he developed the condition during the study. It’s the first eyewitness account — viewed on a molecular level — of the birth of a disease that affects millions of Americans. It’s also an important milestone in the realization of the promise of truly personalized medicine, or tailoring health care to each individual’s unique circumstances.

The researchers call the unprecedented analysis, which relies on collecting and analyzing billions of individual bits of data, an integrative Personal “Omics” Profile, or iPOP. The word “omics” indicates the study of a body of information, such as the genome (which is all DNA in a cell), or the proteome (which is all the proteins). Snyder’s iPOP also included his metabolome (metabolites), his transcriptome (RNA transcripts) and autoantibody profiles, among other things.

The researchers say that Snyder’s diabetes is but one of myriad problems the iPOP can identify and predict, and that such dynamic monitoring will soon become commonplace. “This is the first time that anyone has used such detailed information to proactively manage their own health,” said Snyder. “It’s a level of understanding of health at the molecular level that has never before been achieved.”

The research was published in the March 16 issue of Cell. Snyder, who chairs the Department of Genetics, is the senior author. Postdoctoral scholars Rui Chen, PhD, George Mias, PhD, Jennifer Li-Pook-Than, PhD, and research associate Lihua Jiang, PhD, are co-first authors of the study, which involved a large team of investigators.

The study provides a glimpse into the future of medicine — peppered with untold data-management hurdles and fraught with a degree of self-examination and awareness few of us have ever imagined. And, despite the challenges, the potential payoff is great.

“I was not aware of any type-2 diabetes in my family and had no significant risk factors,” said Snyder, “but we learned through genomic sequencing that I have a genetic predisposition to the condition. Therefore, we measured my blood glucose levels and were able to watch them shoot up after a nasty viral infection during the course of the study.”

As a result, he was able to immediately modify his diet and exercise to gradually bring his levels back into the normal range and prevent the ongoing tissue damage that would have occurred had the disease gone undiagnosed.

Snyder provided about 20 blood samples (about once every two months while healthy, and more frequently during periods of illness) for analysis over the course of the study. Each was analyzed with a variety of assays for tens of thousands of biological variables, generating a staggering amount of information.

The exercise was in stark contrast to the cursory workup most of us receive when we go to the doctor for our regular physical exam. “Currently, we routinely measure fewer than 20 variables in a standard laboratory blood test,” said Snyder, who is also the Stanford W. Ascherman, MD, FACS, Professor in Genetics. “We could, and should, be measuring many, many thousands.”

For Snyder, one set of measurements was particularly telling. On day 301, about 12 days after a viral infection, his glucose regulation appeared to be abnormal. Shortly thereafter his glucose levels became elevated, prompting him to visit his primary care physician. On day 369, he was diagnosed with type-2 diabetes.

“We are all responsible for our own health,” said Snyder, who is also the director of the Stanford Center for Genomics and Personalized Medicine. “Normally, I go for a physical exam about once every two or three years. So, under normal circumstances, my diabetes wouldn’t have been diagnosed for one or two years. But with this real-time information, I was able to make diet and exercise changes that brought my blood sugar down and allowed me to avoid diabetes medication.”

Snyder started his study in the months after arriving at Stanford in 2009, when whole-genome sequencing of individuals was just becoming a reality. Stephen Quake, PhD, who is Stanford’s Lee Otterson Professor of Bioengineering, had recently completed the complete sequencing of his own genome and was working to use the information to predict his risk for dozens of diseases.

But while the predictive power in genomic information is due in part to its static nature — because it doesn’t change over time, a one-time analysis can hint at future events — our bodies are dynamic. They use our DNA blueprints to churn out RNA and protein molecules in varying amounts and types precisely calibrated to respond to the changing conditions in which we live. The result is an exquisitely crafted machine that turns on a dime to metabolize food, flex our muscles, breathe air, fight off infections and make all the other little adjustments that keep us healthy. A misstep can lead to disease or illness.

To generate Snyder’s iPOP, he first had his complete genome sequenced at a level of accuracy that has not been achieved previously. Then, with each sample, the researchers took dozens of molecular snapshots, using a variety of different techniques, of thousands of variables and then compared them over time. The composite result was a dynamic picture of how his body responded to illness and disease.

A number of molecular cues led to the discovery of Snyder’s diabetes. His genomic sequence suggested he had an increased risk for high cholesterol, coronary artery disease (which he knew already), as well as basal cell carcinoma and type-2 diabetes, which was unexpected. Conversely, the sequence predicts his risk for hypertension, obesity and prostate cancer is lower than that of other men his age (54 when the study started). A check of his triglyceride levels at the start of the study confirmed that they were high: 321 mg/dL. Snyder took the cholesterol-lowering drug simvastatin, and his levels dropped dramatically to 81-116 mg/dL. Based on the type-2 diabetes prediction, the team decided to also monitor Snyder’s blood sugar levels, which were normal when the study began.

Snyder, who has two small children, experienced two viral infections during the course of the study: one with rhinovirus (at day 0), and one with respiratory syncytial virus (beginning at day 289). Each time, his immune system reacted by increasing the blood levels of pro-inflammatory cytokines — secreted proteins that cells use to communicate and coordinate their responses to external events such as an infection. Snyder also exhibited increased levels of auto-antibodies, or antibodies that reacted with his own proteins, after viral infection. Although auto-antibody production can be a normal, temporary reaction to illness, the researchers were interested to note that one in particular targeted an insulin receptor binding protein.

The researchers also sequenced the RNA transcripts present in Snyder’s cells during infection at an unheard-of level of detail. “We generated 2.67 billion individual reads of the transcriptome, which gave us a degree of analysis that has never been achieved before,” said Snyder. “This enabled us to see some very different processing and editing behaviors that no one had suspected. We also have two copies of each of our genes and we discovered they often behave differently during infection.” Overall, the researchers tracked nearly 20,000 distinct transcripts coding for 12,000 genes and measured the relative levels of more than 6,000 proteins and 1,000 metabolites in Snyder’s blood.

In Snyder’s case, the researchers observed unexpected relationships and pathways between viral infection and type-2 diabetes by comparing the results of a variety of “omics” studies. “This study opens the door to better understanding this concerted regulation, how our bodies interact with the environment and how we can best target treatment for many other complex diseases at a truly personal level,” said Li-Pook-Than.

The researchers identified about 2,000 genes that were expressed at higher levels during infection, including some involved in immune processes and the engulfment of infected cells, and about 2,200 genes that were expressed at lower levels, including some involved in insulin signaling and response. “We were looking for common pathways that were changing in response to infection,” said Snyder. “In a study like this, you are your own best control. You compare your altered, or infected, states with the values you see when you are healthy.”

Snyder’s iPOP is a proof of principle that the researchers hope will lead to a more-streamlined, less-complex version for regular use in the clinic.

“In the future, we may not need to follow 40,000 variables,” said Snyder. “It’s possible that only a subset of them will be truly predictive of future health. But studies like these are important to know which are important and which don’t add much to our understanding.

“Right now, this type of analysis is very expensive. But we have to expect that, like whole-genome sequencing, it will get much cheaper. And we also have to consider the savings to society from preventing disease.”


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

DNA Damage Seen in Patients Undergoing CT Scanning
Along with the burgeoning use of advanced medical imaging tests over the past decade have come rising public health concerns about possible links between low-dose radiation and cancer.
Monday, July 27, 2015
Genetic Signature Enables Early, Accurate Sepsis Diagnosis
Systemic inflammation after injuries or surgery can dramatically alter the activity of thousands of genes, but a new study shows that changes in just 11 of them are enough to detect the presence or absence of accompanying infection.
Monday, May 18, 2015
Existing Drug May Treat Deadliest Childhood Brain Tumor
For the first time, scientists have identified an existing drug that slows the growth of the deadliest childhood brain tumor.
Friday, May 08, 2015
Foreign Antibodies Mobilize Immune System to Fight Cancer
A mouse’s T cells can be primed to attack and eliminate a malignant tumor by injecting antibodies from another mouse with resistance to the tumor, as well as by activating certain signaling cells, a study has found.
Thursday, May 07, 2015
Tiny Fish Makes Big Splash In Aging Research At Stanford
Researchers disabled aging-associated genes in the short-lived African killifish, including one for an enzyme called telomerase, whose absence caused humanlike disease in the animal.
Friday, February 13, 2015
Tumor Suppressor Also Inhibits Key Property Of Stem Cells
The retinoblastoma protein inhibits cancer by controlling cell division. Now, researchers have shown that it also binds to and inhibits genes necessary for pluripotency.
Friday, November 14, 2014
Scientists Discern Signatures of Old Versus Young Stem Cells
A chemical code scrawled on histones determines which genes in that cell are turned on and which are turned off.
Wednesday, July 03, 2013
Protein Complex May Play Role in Preventing Many Forms of Cancer, Study Shows
Researchers at the Stanford University School of Medicine have identified a group of proteins that are mutated in about one-fifth of all human cancers.
Tuesday, May 07, 2013
Antibody Hinders Growth of Gleevec-Resistant Gastrointestinal Tumors in Lab Test
An antibody that binds to a molecule on the surface of a rare but deadly tumor of the gastrointestinal tract inhibits the growth of the cancer cells in mice.
Thursday, February 07, 2013
Stanford Launches New Center to Advance 'Information Age of Genomics'
With a new research center, Stanford scientists from across campus will join a new "information age of genomics." The goal is nothing short of improving human well-being.
Tuesday, December 04, 2012
Stanford Biologists Watch RNA Fold in Real Time
Using optical tweezers and sub-nanoscale precision, Steven Block and Kirsten Frieda follow the process – and the consequences – of RNA folding.
Monday, October 22, 2012
Where Chromosomes Agree, Stanford researchers Trace Human History
Examining shared stretches of genome from dozens of world populations, Stanford biologists have found a new way, not only to find signatures of human migrations and marriage practices, but to help find hidden disease genes.
Monday, August 20, 2012
New Method Enables Sequencing of Fetal Genomes using only Maternal Blood Sample
The findings from the new approach, published July 4 in Nature, are related to research that was reported a month ago from the University of Washington.
Friday, July 06, 2012
New Genetic Regions Linked to Bone-Weakening Disease and Fractures, Researcher Says
Thirty-two previously unidentified genetic regions associated with osteoporosis and fracture have been identified by a large, worldwide consortium of researchers, including Stanford Prevention Research Center chief John Ioannidis, MD, DSc.
Friday, April 20, 2012
New Method Allows Human Embryonic Stem Cells to Avoid Immune System Rejection, Study Finds
According to Stanford University researchers, a short-term treatment with three immune-dampening drugs allowed human embryonic stem cells to survive and thrive in mice.
Wednesday, March 09, 2011
Scientific News
Long Telomeres Associated with Increased Lung Cancer Risk
Genetic predisposition for long telomeres predicts increased lung adenocarcinoma risk.
Expanding the Brain
A team of researchers has identified more than 40 new “imprinted” genes, in which either the maternal or paternal copy of a gene is expressed while the other is silenced.
Identifying a Key Growth Factor in Cell Proliferation
Researchers discover that aspartate is a limiter of cell proliferation.
Study Uncovers Target for Preventing Huntington’s Disease
Scientists from Cardiff University believe that a treatment to prevent or delay the symptoms of Huntington’s disease could now be much closer, following a major breakthrough.
The Genetic Roots of Adolescent Scoliosis
Scientists at the RIKEN Center for Integrative Medical Sciences in collaboration with Keio University in Japan have discovered a gene that is linked to susceptibility of Scoliosis.
A Gene-Sequence Swap Using CRISPR to Cure Haemophilia
For the first time chromosomal defects responsible for hemophilia have been corrected in patient-specific iPSCs using CRISPR-Cas9 nucleases
New Tool Uses 'Drug Spillover' to Match Cancer Patients with Treatments
Researchers have developed a new tool that improves the ability to match drugs to disease: the Kinase Addiction Ranker (KAR) predicts what genetics are truly driving the cancer in any population of cells and chooses the best "kinase inhibitor" to silence these dangerous genetic causes of disease.
Understanding the Molecular Origin of Epigenetic Markers
Researchers at IRB Barcelona discover the molecular mechanism that determines how epigenetic markers influence gene expression.
New Tech Enables Epigenomic Analysis with a Mere 100 Cells
A new technology that will dramatically enhance investigations of epigenomes, the machinery that turns on and off genes and a very prominent field of study in diseases such as stem cell differentiation, inflammation and cancer has been developed by researchers at Virginia Tech.
Access Denied: Leukemia Thwarted by Cutting Off Link to Environmental Support
A new study reveals a protein’s critical – and previously unknown -- role in the development and progression of acute myeloid leukemia (AML), a fast-growing and extremely difficult-to-treat blood cancer.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!