Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Rigged to Explode?

Published: Wednesday, April 11, 2012
Last Updated: Tuesday, April 10, 2012
Bookmark and Share
Inherited mutation links exploding chromosomes to cancer.

An inherited mutation in a gene known as the guardian of the genome is likely the link between exploding chromosomes and some particularly aggressive types of cancer, scientists at the European Molecular Biology Laboratory (EMBL), the German Cancer Research Centre (DKFZ) and the University Hospital, all in Heidelberg, Germany, have discovered.

Their study, published online in Cell, also presents the first whole genome sequence of a paediatric tumour: medulloblastoma, a brain cancer which is the second most common cause of childhood mortality in developed countries, where only car accidents cause more deaths in children.

Looking at the complete genome sequence of these tumours, the scientists found one or two chromosomes in each cell had countless parts in the wrong order, were missing some genes, and had extra copies of others.

Such extensive rearrangements suggested that those chromosomes had been shattered, like a bead necklace that is pulled too hard, and then wrongly reassembled.

But the scientists only found these telltale signs of chromosome explosion, or chromothripsis, in samples from a specific group of patients.

“All patients who had inherited a mutation in the TP53 gene showed signs of chromothripsis in their tumour cells, but none of the patients with normal TP53 did” says Jan Korbel, who led the genomics research at EMBL, “so this mutation must be involved either in shattering chromosomes, or in preventing the cell from reacting when a chromosome shatters.”

This strong link between the hereditary TP53 mutation and chromothripsis has implications for diagnosis and treatment.

“As clinicians, if we find evidence of chromothripsis in a medulloblastoma sample, we can now look for an inherited mutation in the TP53 gene” says Stefan Pfister, who led the work at the DKFZ, “and we know that any family members who also have the mutation should be screened regularly, as they’ll have a very high risk of developing particular types of cancer, including brain tumours.”

Cancer treatments often involve killing the tumour cells by damaging their DNA with chemo- or radiotherapy, but these treatments also affect healthy cells in the surrounding tissue.

If those cells have healthy copies of p53 - the protein encoded by TP53 - this gene will monitor the genome, and if it finds too much damage it will instruct the cells to stop dividing, sending them into the cellular equivalent of old age (senescence) or suicide (apoptosis).

But if a patient has inherited the TP53 mutation from their parents, all their cells will have faulty copies of this gene, including the cells surrounding the tumour.

Thus, those healthy cells will have trouble dealing with the DNA damage caused by such treatments, and could become cancerous themselves.

So the findings have immediate clinical implications in that such patients should not be given DNA-damaging chemotherapy or high-dose radiotherapy, since both would greatly increase the likelihood of secondary cancers.

The scientists believe that the TP53 mutation may also play a role in causing chromosomes to shatter in the first place, by shortening telomeres, the caps that keep chromosome ends from fraying.

This could make arms from different chromosomes more likely to get stuck to each other and shatter if they’re pulled in different directions.

Since telomeres naturally shorten with age, this could explain why, when the German scientists expanded their study to another cancer - an aggressive form of leukaemia in adults - they found that patients who had both a non-inherited TP53 mutation and evidence of chromothripsis were typically of an advanced age.

“Chromothripsis is thought to cause two to three percent of all human cancers,” says Korbel, “so if we can really prove how the TP53 mutation affects this process, it could have a big impact on our understanding of how healthy cells in the body turn into tumours.”

The study was undertaken as part of the International Cancer Genome Consortium (ICGC), an effort to study 50 different types of cancer worldwide.

“This study shows the power of combining genome sequencing and clinical expertise,” says Peter Lichter from DKFZ, and member of the ICGC scientific steering committee: “cancer genome sequencing can help to understand why patients can react so differently to cancer treatments, and may also lead to the development of new anti-cancer drugs.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Finding Links and Missing Genes
A catalogue of large-scale genetic changes around the world.
Tuesday, October 06, 2015
Ages Apart
Multifaceted approach measured how brain and liver age differently.
Saturday, September 19, 2015
Double Act: How a Single Molecule Can Attract and Repel Growing Brain Connections
The 3D structure of Netrin-1 bound to DCC shows Netrin-1 binds to two DCC molecules in different ways.
Saturday, August 09, 2014
Cancer by Remote-Control
Overlooked DNA shuffling drives deadly paediatric brain tumour.
Tuesday, June 24, 2014
Wired for Change
First steps of gene regulation evolution revealed.
Monday, August 05, 2013
The Human Genome’s Breaking Points
Comprehensive catalogue uncovers genetic sequence of large-scale differences between human genomes.
Wednesday, February 16, 2011
EMBL Scientists Uncover Counterpart of Cerebral Cortex in Marine Worms
Findings give an idea of what the most ancient higher brain centres looked like, and what our distant ancestors used them for.
Friday, September 03, 2010
Making Enough Red Blood Cells
EMBL scientists identify molecules that ensure red blood cell production.
Monday, June 14, 2010
EMBL-EBI Researchers Present Global Map of Human Gene Expression
The full analysis behind the view of the genetic activities determining our appearance, function and behavior is published in Nature Biotechnology.
Thursday, April 08, 2010
New Training and Conference Centre for the Life Sciences at EMBL in Heidelberg
The new Center will form a central European platform where scientists from across the world can meet to exchange ideas and their best practices.
Thursday, March 11, 2010
EMBL Scientists Present Genetic Catalogue of Our Gut Flora
A study shows that, at 3.3 million, microbial genes in our gut outnumber previous estimates for the whole of the human body.
Monday, March 08, 2010
EMBL Scientists Uncover the Gene Responsible for Keeping Females Female
Study, published in Cell, challenges the long-held assumption that the development of female traits is a default pathway.
Friday, December 11, 2009
EMBL Scientists Take New Approach to Predict Gene Expression
The new approach enables the accurate prediction of when and where different CRMs will be active.
Wednesday, November 18, 2009
Scientists Identify Cholesterol-Regulating Genes
EMBL researchers identified 20 genes that are involved in the process of regulating cholesterol levels in the body.
Monday, July 13, 2009
European Centre of Excellence for Mouse Biology Celebrates its 10th Anniversary
Scientists investigating basic research topics have generated mouse models of over 20 different human diseases over the past 10 years.
Wednesday, July 01, 2009
Scientific News
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Biologists Induce Flatworms to Grow Heads and Brains of Other Species
Findings shed light on role of a new kind of epigenetic signaling in evolution, could yield clues for understanding birth defects and regeneration.
Turning up the Tap on Microbes Leads to Better Protein Patenting
Mining millions of proteins could become faster and easier with a new technique that may also transform the enzyme-catalyst industry, according to University of California, Davis, researchers.
Mathematical Model Forecasts the Path of Breast Cancer
Chances of survival depend on which organs breast cancer tumors colonize first.
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
Tardigrade's Are DNA Master Thieves
Tardigrades, nearly microscopic animals that can survive the harshest of environments, including outer space, hold the record for the animal that has the most foreign DNA.
The Secret Behind the Power of Bacterial Sex
Migration between different communities of bacteria is the key to the type of gene transfer that can lead to the spread of traits such as antibiotic resistance, according to researchers at Oxford University.
Farming’s in Their DNA
Ancient genomes reveal natural selection in action.
GMO Food Animals Should be Judged by Product, Not Process
In a world with a burgeoning demand for meat, milk and eggs, regulatory policies around the use of biotechnologies in agriculture need to be based on the safety and attributes of those foods rather than on the methods used to produce them, says a UC Davis animal scientist.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos