Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Duke University Uses NTA to Characterize "Nanoconstructs" for Biomedical Applications

Published: Friday, April 20, 2012
Last Updated: Thursday, April 19, 2012
Bookmark and Share
NTA to characterize metal nanoparticle construct materials for use in biosensing, imaging and cancer therapy.

NanoSight reports on the work of Professor Tuan Vo-Dinh's group at Duke University where they apply Nanoparticle Tracking Analysis (NTA) to characterize metal nanoparticle construct materials for use in biosensing, imaging and cancer therapy.

The Vo-Dinh Lab is a part of the Departments of Biomedical Engineering and Chemistry of Duke University.

The Vo-Dinh Lab is also a part of the Fitzpatrick Institute for Photonics, of which Professor Vo-Dinh is the director.

The main research goal of the group is to develop advanced techniques and methods to protect the environment (environmental sensors) and improve human health (medical diagnostics and therapy).

As a part of these research goals, Dr Hsiangkuo Yuan and other members of Professor Vo-Dinh's group design and fabricate metal nanoparticle constructs such as gold nanostar platforms.

These are characterized with UV-VIS, TEM, Raman microscope, fluorometers and other techniques.

However, to design nanoconstructs for in vivo applications, the particle size needs to be in the range from 10 to 100 nm for lower clearance from the kidney and reticuloendothelial system (RES).

It is important that the construct is in the right size range and is physiologically stable (non-aggregated) for biomedical applications in, for example, optical imaging or nanodrug delivery where it is also critical that the nanoparticle dose administered can be determined.

To compare plasmonic properties, i.e. the enhanced electromagnetic properties of nanoparticles, they need to determine the effect of different sizes and to understand in detail the profile of the particle size distribution of similar concentrations which can be obtained using NanoSight's NTA system.

Prior to NTA, the group mostly used TEM to look at particle shape and measure particle size. The surface coating or the aggregation state cannot be easily investigated using just TEM.

NanoSight provides a significant complementary role on providing hydrodynamic size distribution and zeta potential.

Moreover, because NanoSight gives the concentration information, it allows them to normalize their comparison by individual particle counting which was quite difficult to obtain previously.

Commenting on the benefits of using the NanoSight alongside TEM (for size) and atomic absorption spectroscopy (for mass), Professor Vo-Dinh said the ability to make characterization particle by particle provides complementary information to the ensemble characterization (e.g. DLS).

The group have published nanoconstruct data, specifically gold nanostars, in the journal, Nanotechnology, with another paper currently in press, Nanomedicine.

They report the determination of particle hydrodynamic size distribution, zeta potential and concentration using NTA.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Method Development to Estimate the Purity of Vesicle Preparations
Nanoparticle tracking analysis is used to estimate the purity of vesicle preparations at the Cardiff University School of Medicine.
Thursday, February 28, 2013
Scientific News
Gene Therapy Via Ultrasound
Research into a gene therapy approach called sonoporation could help combat heart disease and cancer.
Creating Embryos with 'Heteroplasmy'
New discovery in genetic research could lead to treatments for mitochondrial diseases.
Proteins Preserve Vital Genetic Data
Research has shown how two key proteins bring about the oragnization of chromosomes and our genome.
Novel MRI Technique Distinguishes Healthy Prostate Tissue from Cancer
The UTSW researchers have determined that glucose stimulates release of the zinc ions from inside epithelial cells, which they could then track on MRIs.
Eye Colour Determines Cancer Risk
Researchers report first findings of a link between eye pigment gene and uveal melanoma development.
Telomere Replenishment in Real Time
Researchers have visualised the process of telomere attachment to chromosomes through single-molecule imaging.
Converting Isolated Cells with Gene Editing
Researchers have used CRISPR to generate neuronal cells from isolated connective tissue.
New Inflammatory Disease Discovered
NIH researchers have discovered a rare and potentially deadly disease - otulipenia - the mostly affects children.
Gene Linked to Hearing Loss Identified
Researchers have identifed a gene associated with age-related hearing loss.
Oxygen Content Contributes to Cancer
Research project concludes lack of oxygen in tumour cells changes cell gene expression, contributing to the growth of cancer.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!