Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

BASF subsidiary Metanomics Health launches MetaMap®Tox

Published: Monday, August 13, 2012
Last Updated: Monday, August 13, 2012
Bookmark and Share
MetaMap®Tox is a service evaluating specific metabolomic patterns in vivo, enabling customers to better and faster identify potential safety risks of test compounds in in vivo studies of rats. Developed in-house by BASF’s Experimental Toxicology and Ecology unit and marketed through Metanomics Health, MetaMap®Tox addresses key unmet needs for in vivo toxicology testing: predictability, understanding of a toxicology mechanism and the ability for translation to clinical use.

In the development of novel drugs, early recognition of potential toxicological effects and their underlying mechanisms is of utmost importance. To support the cost- and time-effective development of new compounds with more favorable toxicological profiles, Metanomics Health GmbH is launching MetaMap®Tox, a powerful tool for biopharmaceutical safety research. MetaMap®Tox is a service evaluating specific metabolomic patterns in vivo, enabling customers to better and faster identify potential safety risks of test compounds in in vivo studies of rats.


MetaMap®Tox has been developed in-house by BASF’s Experimental Toxicology and Ecology unit and will be marketed through Metanomics Health. Over a period of seven years, more than 500 chemical entities were thoroughly tested in vivo to generate and validate more than 100 metabolomic fingerprints of different toxicological modes of action. These data allow for a faster and better assessment of toxicological profiles of new chemical entities (NCEs). MetaMap®Tox thereby addresses key unmet needs for in vivo toxicology testing: predictability, understanding of a toxicology mechanism and the ability for translation to clinical use.

MetaMap®Tox has been technically validated by the Drug Safety Executive Council (DSEC), in a consortium approach of twelve leading biopharmaceutical companies following the goal to advance new technologies for the development of better and safer medicines worldwide. It will be offered in two distinct service packages: MetaMap®Tox Screener and MetaMap®Tox Profiler.

MetaMap®Tox Screener enables lead optimization in exploratory non-GLP (Good Laboratory Practice) tox programs based on predictive metabolomic patterns in rat plasma in 14-day studies. Benefits include coverage of systemic toxicological profiles of NCEs and unique mechanistic understanding based on 25 specific & predictive toxicological modes of action (MoA) in 11 different target organs.

MetaMap®Tox Profiler is targeting early safety assessment in a preclinical GLP toxicology setting. MetaMap®Tox Profiler covers 46 validated toxicological modes of action (MoA) in a total of 17 different target organs. Key attributes comprise the potential to detect drug side effects (e.g. liver and thyroid injury) at an early stage and a detailed understanding of systemic toxicology of NCEs, both leading to an improved lead selection and guidance for further toxicological tests.

"We are very happy to launch MetaMap®Tox Screener and MetaMap®Tox Profiler," said Tim Boelke, Managing Director of Metanomics Health. "These have been designed based on feedback by the DSEC, whose members confirmed their great interest in a tool that provides predictive toxicological assessments already in the exploratory non-GLP phase. We are convinced that MetaMap®Tox addresses this key unmet need."

"MetaMap®Tox has been developed by an interdisciplinary BASF team over a period of more than seven years to obtain early information on the toxicological profile whilst reducing the number of animals used," said Bennard van Ravenzwaay, Senior Vice President, Experimental Toxicology and Ecology at BASF. "MetaMap®Tox is already in routine use at BASF, contributing to faster decision making and significant savings in terms of cost and time to market for the BASF Group."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,400+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Cell Transplant Treats Parkinson’s in Mice
A University of Wisconsin—Madison neuroscientist has inserted a genetic switch into nerve cells so a patient can alter their activity by taking designer drugs that would not affect any other cell.
Understanding Female HIV Transmission
Glowing virus maps points of entry through entire female reproductive tract for first time.
Genetic Markers Influence Addiction
Differences in vulnerability to cocaine addiction and relapse linked to both inherited traits and epigenetics, U-M researchers find.
A lncRNA Regulates Repair of DNA Breaks in Breast Cancer Cells
Findings give "new insight" into biology of tough-to-treat breast cancer.
Detection of HPV in First-Void Urine
Similar sensitivity of HPV test on first void urine sample compared to cervical smear.
Shape Of Tumor May Affect Whether Cells Can Metastasize
Illinois researchers found that the shape of a tumor may play a role in how cancer cells become primed to spread.
Computational Model Finds New Protein-Protein Interactions
Researchers at University of Pittsburgh have discovered 500 new protein-protein interactions (PPIs) associated with genes linked to schizophrenia.
MicroRNA Pathway Could Lead to New Avenues for Leukemia Treatment
Cancer researchers at the University of Cincinnati have found a particular signaling route in microRNA (miR-22) that could lead to targets for acute myeloid leukemia, the most common type of fast-growing cancer of the blood and bone marrow.
Analysis of Dog Genome will Provide Insight into Human Disease
An important model in studying human disease, the non-coding RNA of the canine genome is an essential starting point for evolutionary and biomedical studies – according to a new study led by The Genome Analysis Centre (TGAC).
New Insights into Gene Regulation
Researchers have solved the three-dimensional structure of a gene repression complex that is known to play a role in cancer.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,400+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!