Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Sequencing of 100,000 Pathogens to Help Solve Foodborne Outbreaks

Published: Friday, August 24, 2012
Last Updated: Friday, August 24, 2012
Bookmark and Share
New collaboration of Federal agencies with UC Davis and Agilent Technologies.

Federal agencies has announced a new collaboration with the University of California, Davis (UC Davis) and Agilent Technologies to create a public database of 100,000 foodborne pathogen genomes to help speed identification of bacteria responsible for foodborne outbreaks.

The goal of the project is to create an open access database for researchers across industry and academia to advance development of tests for food pathogen identification and origin determination.

Such tests have the potential to significantly reduce the typical public health response time in outbreaks of foodborne illness to hours or days instead of weeks.

The five-year effort, dubbed “The 100K Genome Project”, was conceived by UC Davis, Agilent, and the Food and Drug Administration (FDA).

The sequencing will include the genomes of important foodborne pathogens such as Salmonella, Listeria, and E. coli.

“This important project will harness the cutting-edge technology of genome sequencing to advance our understanding of and response to foodborne outbreaks,” said FDA Commissioner Margaret A. Hamburg, M.D.

Hamburg continued, “FDA is pleased to contribute scientific and technical expertise necessary to create and maintain this foodborne pathogen database which will be fully accessible and have long-lasting impact on protecting public health.

With the goal of making the food supply safer for consumers, the new database will significantly speed testing of raw ingredients, finished products, and environmental samples taken during investigation of foodborne illness outbreaks.

This type of information also enables scientists to make new discoveries that drive the development of new methods to control disease-causing bacteria in the food chain.

Identifying the pathogens responsible for foodborne illnesses and outbreaks is only one part of the public health response. Food safety officials still need to be able to determine which food or ingredient is contaminated and where it came from.

This can be a challenge, especially when multi-ingredient foods are involved or the same ingredient is sourced from multiple suppliers around the world.

When used as part of an overall surveillance and outbreak investigation system, the genetic information in the new database, in combination with geographic information about the pathogens, will help public health officials more quickly pinpoint the source of contamination responsible for a foodborne outbreak.

The genomic sequencing will be coordinated by UC Davis and performed at the newly formed BGI@UC Davis genome sequencing facility.

Agilent is providing scientific expertise, instrumentation, and funding to support a portion of these activities.

The CDC and FDA will provide guidance for the project, scientific expertise, and thousands of important food pathogen strains to be sequenced.

The U.S. Department of Agriculture’s Food Safety and Inspection Service (FSIS) will also collaborate on the project, contributing important bacterial strains from their regulatory testing program.

As sequences are completed they will be stored in the National Institutes of Health’s National Center for Biotechnology Information’s public database.

As part of its efforts for the collaboration, UC Davis is currently forming a consortium to support the 100K Genome Project.

The consortium participants will draw from a variety of stakeholders including Federal, state, and local public health laboratories, food manufacturers, industries, and academic organizations.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Keck Foundation Grant Awarded to UC Davis Researcher
Grant will help fund biomedical project, "In Vivo 3D Imaging Using Bioluminescent Gene Reporters and MRI."
Monday, March 10, 2014
Cancer Drug Unties Knots in the Chromosome that Causes Angelman and Prader-Willi Syndromes
Researchers have identified how and where in the genome a cancer chemotherapy agent acts on and ‘un-silences’ the epigenetically silenced gene that causes Angelman syndrome.
Thursday, August 08, 2013
Scientific News
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
Tardigrade's Are DNA Master Thieves
Tardigrades, nearly microscopic animals that can survive the harshest of environments, including outer space, hold the record for the animal that has the most foreign DNA.
The Secret Behind the Power of Bacterial Sex
Migration between different communities of bacteria is the key to the type of gene transfer that can lead to the spread of traits such as antibiotic resistance, according to researchers at Oxford University.
Farming’s in Their DNA
Ancient genomes reveal natural selection in action.
GMO Food Animals Should be Judged by Product, Not Process
In a world with a burgeoning demand for meat, milk and eggs, regulatory policies around the use of biotechnologies in agriculture need to be based on the safety and attributes of those foods rather than on the methods used to produce them, says a UC Davis animal scientist.
Enzyme Critical to Maintaining Telomere Length Discovered
New method expected to speed understanding of short telomere diseases and cancer.
Gene Drive Reversibility Introduces New Layer of Biosafety
Ability to introduce or reverse the spread of genetic traits through populations could one day improve pest management and disease control.
RNA-Based Drugs Give More Control Over Gene Editing
CRISPR/Cas9 gene editing technique can be transiently activated and inactivated using RNA-based drugs, giving researchers more precise control in correcting and inactivating genes.
University of Glasgow Researchers Make An Impact in 60 Seconds
Early-career researchers were invited to submit an engaging, dynamic and compelling 60 second video illuminating an aspect of their research.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos