Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Domainex Researchers Identify Small-Molecule Inhibitors of TBK1/IKKepsilon Affecting IL-17 Signaling

Published: Monday, November 05, 2012
Last Updated: Monday, November 05, 2012
Bookmark and Share
Inhibitors may have utility in autoimmune disease treatment.

Domainex Ltd. has developed a number of chemical series with potent and selective activity against two closely-related kinases TBK1 and IKKepsilon.

IL-17 mediated signaling is known to induce the expression of cytokines and other effectors that can cause a variety of immunological diseases such as psoriasis and Chronic Obstructive Pulmonary Disease (COPD).

Domainex researchers are now the first to report that small-molecule inhibitors of TBK1/IKKepsilon are able to affect IL-17 signaling.

These results suggest that the Domainex inhibitors may have utility in a wide range of clinically-important diseases that have great unmet medical needs.

Recent clinical studies reported in The New England Journal of Medicine by Lilly and Amgen have shown that neutralizing anti-IL-17 monoclonal antibodies can have a major impact on psoriasis (Leonardi et al. 2012 and Papp et al. 2012 respectively).

The demonstration by Domainex that small-molecule drugs targeting IKKepsilon can inhibit IL-17 signaling indicates that these compounds have great clinical potential in this disease and other important settings.

Domainex has developed three series of drug-like compounds, each series having inhibitors with high potency and selectivity against other kinases.

The lead compounds have good metabolic properties and the Company is now driving these compounds forwards towards a clinical candidate.

Domainex's Research Director, Trevor Perrior, said: "Domainex, in collaboration with The Institute of Cancer Research, has previously shown that its inhibitors of TBK1/IKKepsilon have activity against a variety of cancer cell-lines. Domainex has also demonstrated that its inhibitors are very potent blockers of interferon-beta production in immune cells, showing the compounds may have utility in diseases such as lupus. The latest finding that our TBK1/IKKepsilon inhibitors can also inhibit IL-17 signaling suggests that the compounds are also of potential use for treatment of other major diseases such as psoriasis and COPD. Domainex has recently obtained funding from the government-backed Biomedical Catalyst programme to explore the use of its inhibitors of IKKepsilon in COPD."

Eddy Littler, CEO of Domainex, said: "The latest results showing the activity of Domainex's TBK1/IKKepsilon inhibitors against IL-17 signaling reinforces the fact that this project is of very high interest to pharma. Indeed Domainex is already in discussion with a number of potential partners with a view to them helping us to progress the programme to the clinic, and fully exploit its enormous potential. We are also grateful for the Biomedical Catalyst award that will enable us to extend our work to COPD, and help us fully exploit our intellectual property on inhibitors of TBK1 and IKKepsilon".

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,700+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

ZoBio, Domainex Partner to support FORMA Therapeutics’ Drug Discovery Programs
ZoBio and Domainex Ltd. announce a collaboration with FORMA Therapeutics to provide NMR-based structural biology services for a substantial panel of FORMA drug targets.
Monday, December 08, 2014
Domainex Awarded Technology Strategy Board Funding
£250,000 grant to support the development of a new drug for the treatment of cancers.
Friday, November 04, 2011
Domainex Ltd Wins Biotechnology Innovation Award
The award was presented by UK Trade & Investment for developing new technologies for streamlining and accelerating the drug discovery process.
Wednesday, August 22, 2007
Scientific News
Gene Editing Could Enable Pig-To-Human Organ Transplant
The largest number of simultaneous gene edits ever accomplished in the genome could help bridge the gap between organ transplant scarcity and the countless patients who need them.
Antioxidants Cause Malignant Melanoma to Metastasize Faster
Fresh research at Sahlgrenska Academy has found that antioxidants can double the rate of melanoma metastasis in mice.
UC San Diego Team Up with Illumina to Speed-Read Your Microbiome
Data analysis app accelerates studies aimed at using microbes to predict, diagnose and treat human diseases.
Paving the Way for Diamonds to Trace Early Cancers
Researchers from the University of Sydney reveal how nanoscale 'diamonds' can light up early-stage cancers in MRI scans.
Researchers Develop Classification Model for Cancers Caused by KRAS
Most frequently mutated cancer gene help oncologists choose more effective cancer therapies.
Chromosomal Chaos
Penn study forms basis for future precision medicine approaches for Sezary syndrome
Shaking Up the Foundations of Epigenetics
Researchers at the Centre for Genomic Regulation (CRG) and the University of Barcelona (UB) published a study that challenges some of the current beliefs about epigenetics.
Genetic Defences of Bacteria Don’t Aid Antibiotic Resistance
Genetic responses to the stresses caused by antibiotics don’t help bacteria to evolve a resistance to the medications, according to a new study by Oxford University researchers.
Tolerant Immune System Increases Cancer Risk
Researchers have found that individuals with high immunoCRIT ratios may have an increased risk of developing certain cancers.
Developing a Gel that Mimics Human Breast for Cancer Research
Scientists at the Universities of Manchester and Nottingham have been funded to develop a gel that will match many of the biological structures of human breast tissue, to advance cancer research and reduce animal testing.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,700+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos