Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Connecting the Genetic Dots of Disease

Published: Friday, November 09, 2012
Last Updated: Friday, November 09, 2012
Bookmark and Share
Broad Institute scientists aim to understand the underlying biology leading to disease.

When Liz Rossin began the PhD portion of the Harvard/MIT MD-PhD program in the lab of Mark Daly, a ubiquitous and critical problem in genetic research caught her attention. At the time, researchers had identified more than 150 genetic regions scattered throughout the genome tied to various diseases. Such experiments, known as genome-wide association studies (GWAS), would turn up dozens of regions likely harboring genetic changes contributing to risk of disease, but would not point to specific causal mutations. In order to understand the underlying biology leading to disease, Rossin and her colleagues wanted to identify the connections among these regions.

“That’s the problem we were interested in,” says Rossin, who is now finishing medical school at Harvard. “We have all of these regions in the genome associated with disease, but we don’t necessarily know what they mean or what they have to do with one another.”

Inspired by this challenge, Rossin went on to create DAPPLE – Disease Association Protein-Protein Link Evaluator – an algorithm that can help researchers examine possible networks and draw meaningful conclusions from GWAS data by looking at the physical interactions among proteins. DAPPLE has been used to evaluate data for a variety of diseases including Alzheimer’s disease, rheumatoid arthritis, autism, and more.

Most recently, Broad researchers and collaborators used DAPPLE in a study of inflammatory bowel disease, an illness that includes Crohn’s disease (CD) and ulcerative colitis (UC), both inflammatory diseases of the gastrointestinal tract (a paper detailing the results was published in Nature this week – you can check out a Broad press release here or the original paper here). By combining raw data from studies of CD and UC and adding newly collected genetic information, the team was able to more than double the number of genetic regions tied to disease. To draw conclusions from these 160 genetic results, the researchers turned to DAPPLE.

“DAPPLE is a powerful tool for this kind of project,” says Stephan Ripke, one of the first authors of the Nature paper and a researcher at the Broad Institute and Massachusetts General Hospital. “It allows you to build networks and then determine which of those networks make the most sense.”

DAPPLE is a tool of permutation, meaning that it takes proteins in protein-protein interaction databases and rearranges them again and again so that when researchers build a network – say, from 160 regions of the genome tied to IBD – they can compare it to what would be expect by random chance. When Rossin created DAPPLE in Daly’s lab, she teamed up with Kasper Lage, now a researcher at the Broad Institute, and Chris Cotsapas, now an assistant professor at Yale, to populate the algorithm with a list of hundreds of thousands of known protein-protein interactions. Rossin describes these interactions as the “workhorses of the cell” that set off important physical and chemical reactions. DAPPLE uses these known interactions to test possible networks and even predict new associations. In the case of IBD, DAPPLE helped the researchers narrow in on a protein network that implicated genes known to influence how the body responds to pathogens that cause diseases like tuberculosis and leprosy.

“DAPPLE will make an educated guess about all of the genes in a region that could be playing a role in disease, and it will do it for each region, and then ask if the network that it has generated is more connected than would be expected by random chance,” Rossin explains. “If the answer is yes, it will tell you which genes are driving that connection.”

Researchers can then follow up on these critical, driving genes. In previous studies of autism, DAPPLE turned up hits in pathways involved in chromatin remodeling.

“With DAPPLE, you can go from a big list of regions to a narrowed down list of genes that may be very important for your disease,” says Rossin.

Rossin has been impressed by the many uses researchers have found for the algorithm she helped create, several of which she could not have envisioned when DAPPLE was originally built.

“When we created DAPPLE, we wanted to make the tool as accessible as possible, so we built a website that anyone can use – you don’t even have to download it,” she says. “It’s been really exciting for me to see the way people have started using it.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Shining A Light On Bladder Cancer
Researchers scrutinize patterns of mutations in bladder tumor genomes, gleaning insights into the roles of DNA repair and tobacco-related DNA damage.
Friday, May 06, 2016
Screen of Human Genome Reveals Set of Genes Essential for Cellular Viability
Using two complementary analytical approaches, scientists at Whitehead Institute and Broad Institute of MIT and Harvard have for the first time identified the universe of genes in the human genome essential for the survival and proliferation of human cell lines or cultured human cells.
Monday, October 19, 2015
DARPA Awards $32 Million Contract to MIT, Broad Institute Foundry
A facility at the Broad Institute of MIT and Harvard and MIT that aims to achieve the full potential of engineering biology has received a five-year, $32 million contract from the Defense Advanced Research Projects Agency (DARPA).
Monday, September 28, 2015
Scientists Discover New System For Human Genome Editing
CRISPR-Cpf1 system could disrupt both scientific and commercial landscape.
Monday, September 28, 2015
Broad Institute & Google Genomics Combine Bioinformatics and Computing Expertise
Both companies explore how to break down major technical barriers that increasingly hinder biomedical research.
Thursday, June 25, 2015
CRISP-Disp Leverages CRISPR-Cas9 to Deliver RNA Structures to Targets in the Genome
A team of researchers from the Broad Institute and the Harvard Stem Cell Institute has developed CRISP-Disp, a method that expands on the CRISPR-Cas9 system, allowing researchers to display multiple, large RNA structures on the Cas9 protein.
Wednesday, June 10, 2015
GTEx: Useful Expression For Cancer Research
GTEx Project has recently published several papers reporting on findings from its two-year pilot phase.
Tuesday, May 26, 2015
Single-cell Analysis Hits its Stride
Advances in technology and computational analysis enable scale and affordability, paving the way for translational studies.
Saturday, May 23, 2015
Highly Efficient New Cas9 for In Vivo Genome Editing
New finding is expected to expand therapeutic and experimental applications of CRISPR.
Tuesday, April 07, 2015
Broad Institute of MIT and Harvard and Bayer Healthcare Expand their Partnership
Collaboration to develop therapies for cardiovascular disease.
Thursday, April 02, 2015
In vivo CRISPR-Cas9 Screen Sheds Light On Cancer Metastasis And Tumor Evolution
Genome-scale study points to drivers of tumor evolution and metastasis, provides roadmap for future in vivo Cas9 screens.
Friday, March 06, 2015
Scientists Map the Human Loop-ome, Revealing a New Form of Genetic Regulation
Researchers describe the results of a five-year effort to map, in unprecedented detail, how the 2-meter long human genome folds inside the nucleus of a cell.
Tuesday, December 23, 2014
Disorder in Gene-Control System is a Defining Characteristic of Cancer, Study Finds
Findings indicate that the disarray in the on-off mechanism is one of the defining characteristics of cancer.
Tuesday, December 23, 2014
Two Studies Identify A Detectable, Pre-Cancerous State In The Blood
Findings pave way for new lines of cancer research focused on detection and prevention.
Thursday, November 27, 2014
Dramatic Response And Resistance To Cancer Drug Traced
Sequencing reveals why thyroid tumor responded to, and eventually resisted, treatment.
Friday, October 10, 2014
Scientific News
Scientists Find Evidence That Cancer Can Arise Changes
Researchers at Rockefeller University have found a mutation that affects the proteins that package DNA without changing the DNA itself can cause a rare form of cancer.
Modified Microalgae Converts Sunlight into Valuable Medicine
A special type of microalgae can soon produce valuable chemicals such as cancer treatment drugs and much more just by harnessing energy from the sun.
Breakthrough Approach to Breast Cancer Treatment
Scripps scientists have designed a drug candidate that decreases growth of breast cancer cells.
Loss Of Y Chromosome Increases Risk Of Alzheimer’s
Men with blood cells that do not carry the Y chromosome are at greater risk of being diagnosed with Alzheimer’s disease. This is in addition to an increased risk of death from other causes, including many cancers. These new findings by researchers at Uppsala University could lead to a simple test to identify those at risk of developing Alzheimer’s disease.
A Guide to CRISPR Gene Activation
A comparison of synthetic gene-activating Cas9 proteins can help guide research and development of therapeutic approaches.
Gene That Lowers Heart Attack Risk Identified
Individuals with a rare twelve-letter deletion from a gene on chromosome 17 have significantly reduced non-HDL cholesterol levels and a 35% lower than average risk of heart disease.
Testing Non-Breast/Ovarian Cancer Genes
Researchers have found that expanding gene panel beyond breast/ovarian cancer genes in these patients does not add any clinical benefit. Instead, testing has produced more questions than answers.
Myeloid-Derived Suppressor Cells Play Role in Tumor Growth
Researchers at Baylor College of Medicine have reported a new mechanism that helps cancer cells engage myeloid-derived suppressor cells.
Cancer Cells Coordinate to Form Roving Clusters
Rice University scientists identify ‘smoking gun’ in metastasis of hybrid cells.
Genes For Nose Shape Found
Genes that drive the shape of human noses have been identified by a UCL-led study.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!