Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NIH-Led Study Finds Genetic Test Results Do Not Trigger Increased Use of Health Services

Published: Monday, November 12, 2012
Last Updated: Monday, November 12, 2012
Bookmark and Share
Medical experts feared personal genetic test results might drive overuse of expensive medical care.

People have increasing opportunities to participate in genetic testing that can indicate their range of risk for developing a disease.

Receiving these results does not appreciably drive up or diminish test recipients' demand for potentially costly follow-up health services, according to a study performed by researchers at the National Institutes of Health and colleagues at other institutions.

The study in the May 17, 2012 early online issue of Genetics in Medicine was done by investigators with the Multiplex Initiative, a multi-center collaborative initiative involving investigators from the National Institutes of Health's Intramural Research Program, Group Health Cooperative in Seattle, and the Henry Ford Health System in Detroit.

The tests are available from a growing number of commercial producers, and health care providers have been uncertain whether people who received information only about risk would follow up by demanding diagnostic testing to monitor for predicted illnesses.

The study is the first to use electronic health records - rather than self-reported behavior - to measure the impact of genetic testing on the subsequent consumption of health services by commercially insured, healthy adults. Self reports, which can be affected by memory lapses and other problems, tend to be less accurate.

"We need to understand the impact of genomic discoveries on the health care system if these powerful technologies are going to improve human health," said Dan Kastner, M.D., Ph.D., scientific director and head of the National Human Genome Research Institute's (NHGRI) Division of Intramural Research. "We are still learning how to integrate new genomic discoveries into clinical care effectively and efficiently."

"There are a lot of unanswered questions about how genetic test results can be used to guide people towards making positive lifestyle and health behavior changes," said Colleen McBride, Ph.D., chief of NHGRI's Social and Behavioral Research Branch. "This study goes a long way towards bringing data to these debates and shows that people are not likely to make inappropriate demands of health delivery systems if they are properly informed about the limitations of genetic tests."

Genetic tests, such as those used in this study, can detect common variants of genes associated with modest alterations in the chances of developing particular diseases. The term multiplex refers to simultaneously performing multiple genetic tests on a single blood sample.

The study included 217 healthy people between the ages of 25 and 40 who elected to participate in genetic susceptibility testing offered by their health plan. The researchers analyzed health care usage by the participants in the 12 months before genetic testing and the 12 months following the testing. They also compared the test group's behavior with a group of about 400 similar plan members who declined the testing offer.

The researchers counted the number of physician visits and laboratory tests or procedures the people received, particularly those services associated with four of the eight conditions tested by the multiplex panel.

Most of the procedures or screening tests that were counted are not among those currently recommended for people in this age group who don't have symptoms. The researchers found that participants in genetic testing did not change their overall use of health care services compared with those not tested.

All of the individuals who elected to undergo the multiplex test carried at least one at-risk genetic marker, with the majority carrying an average of nine at-risk variants.

The tests performed for the Multiplex Initiative include a set of genetic variants reliably associated with an increase in disease risk and for which some corrective health behavior has been shown to prevent illness.

Having a risk version of one of the 15 genes on the multiplex genetic test does not mean that a person is certain to get the condition - only that he or she might have a slightly greater chance of developing the health condition, explained Dr. McBride. There are many things other than genetics that contribute to the risk of common diseases, including lifestyle factors such as diet, exercise, smoking and sun exposure.

"Much is written about using genetics to personalize health care," said co-author Lawrence C. Brody, Ph.D., chief of NHGRI's Genome Technology Branch. "Some think that this new generation of genetic tests will be a very positive addition to medicine; others believe they have the potential to make things worse."

Dr. Brody designed the panel of genetic tests used in the Multiplex Initiative, consisting of 15 genetic markers that play roles in eight common diseases, including type 2 diabetes, coronary heart disease, high blood cholesterol, high blood pressure, osteoporosis, lung cancer, colorectal cancer and melanoma.

The Multiplex Initiative was launched in May 2007 by the NHGRI Division of Intramural Research and the National Cancer Institute, both at NIH, along with Group Health Cooperative in Seattle and the Henry Ford Health System in Detroit.

For the first two years of the study, the investigators accumulated data from 2,000 Detroit area residents who were offered a multiplex genetic test for eight common conditions.

Once enrolled, participants were asked to review information online about the multiplex genetic test and to decide whether they were interested in taking the test. Those who agreed to genetic testing met with a research educator, who provided more information about the risks and benefits of testing, and obtained the patient's written consent.

Test results were mailed to participants. Trained research educators called the participants to help them interpret and understand their results. The study also included follow-up interviews with participants three months after they received their results.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Inflammatory Disease Discovered
NIH researchers have discovered a rare and potentially deadly disease - otulipenia - the mostly affects children.
Tuesday, August 23, 2016
Public Support for National Study
Survey shows the majority of respondents support or show willingness for national precision medicine study.
Thursday, August 18, 2016
Schizophrenia, Autism Share Genetic Causes
Monkey brain developmental atlas pinpoints when, where genes activate.
Tuesday, August 16, 2016
How Breast Cancers Resist Chemotherapy
Researchers discovered an unexpected way that breast cancers cells with mutant BRCA1 or BRCA2 genes acquire drug resistance and evade chemotherapies.
Wednesday, August 10, 2016
Mutations Linked to Immunotherapy Resistance
Researchers uncover mutations in tumors of three patients with advanced melanoma that allowed the tumors to become resistant to the immune checkpoint inhibitor pembrolizumab (Keytruda®).
Tuesday, August 09, 2016
Genetic Cause of Rare Pediatric Neuropathy Identified
NIH mouse study identifies the mechanism responsible for a rare form of pediatric neuropathy.
Thursday, August 04, 2016
Depression Genetics Insight from Crowd-Sourced Data
Genome sites liked to depression have been discovered from data shared by people who had purchased their genetic profiles online.
Tuesday, August 02, 2016
Uncovering a New Principle in Chemotherapy Resistance in Breast Cancer
The NIH study has revealed an entirely unexpected process for acquiring drug resistance that bypasses the need to re-establish DNA damage repair in breast cancers that have mutant BRCA1 or BRCA2 genes.
Thursday, July 21, 2016
NIH Funds Million-Person Medicine Study
NIH announces $55million in awards to build foundations for ambitious Cohort Program that aims to engage 1 million participants in lifestyle, environments and genetics research.
Friday, July 08, 2016
Largest-Ever Study of Breast Cancer Genetics in Black Women
The study will identify genetic factors that may underlie breast cancer disparities.
Thursday, July 07, 2016
Significant Expansion Of Data Available In The Genomic Data Commons
Cancer genomic profile information from 18,000 adult cancer patients will be added to the database.
Wednesday, June 29, 2016
Predicting Effective Drug Combinations For TB
Researchers analyzed gene regulatory networks to explain the effectiveness of an experimental drug combination against drug-resistant tuberculosis bacteria.
Wednesday, June 15, 2016
Genomic Data Commons Launched
Part of the National Cancer Moonshot, the GDC will centralize and standardize accessible data.
Tuesday, June 07, 2016
Drug Might Help Treat Sepsis
A DNA enzyme called Top1 plays a key role in turning on genes that cause inflammation in mouse and human cells in response to pathogens. A drug blocking this enzyme rescued mice from lethal inflammatory responses, suggesting a potential treatment for sepsis.
Wednesday, May 18, 2016
NIH Funds New Studies on Ethical, Legal and Social Impact of Genomic Information
Four new grants from the National Institutes of Health will support research on the ethical, legal and social questions raised by advances in genomics research and the increasing availability of genomic information.
Wednesday, May 18, 2016
Scientific News
Breast Cancer Cells Found To Switch Molecular Characteristics
Spontaneous interconversion between HER2-positive and HER2-negative states could contribute to progression, treatment resistance in breast cancer.
Some Breast Cancer Patients With Low Genetic Risk Could Skip Chemotherapy
Genetic test can help predict survival and guide treatment options.
Lose Weight, Escape the Eight: Weight-Based Cancer Risk
IARC has identified eight additional cancer sites linked to overweight and obesity.
Coffee Consumption Linked to Genes
Researchers have identified a gene that influences coffee consumption. The gene is thought to relate to caffeine breakdown.
Emerging Model of Cancer
Cancer acts cooperatively, making individual decisions but acting in unison; this insight is being used to create a computer model of cancer.
Biological Barcodes Using CRISPR
Using genome editing tools, researchers are getting closer to understand differentiation of various cell types during development.
Controlling DNA Repair
Scientists discover that DNA repair outcomes following CRISPR-Cas9 cleaving are non-random and can be harnessed to produce desired effects.
Demonstrating LNP Delivery of CRISPR Components
Intellia has presented data demonstrating in vivo gene editing ising liquid nanoparticles (LNPs) to deliver CRISPR/Cas9.
Gene Therapy Via Ultrasound
Research into a gene therapy approach called sonoporation could help combat heart disease and cancer.
Creating Embryos with 'Heteroplasmy'
New discovery in genetic research could lead to treatments for mitochondrial diseases.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!