Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NIH-Led Study Finds Genetic Test Results Do Not Trigger Increased Use of Health Services

Published: Monday, November 12, 2012
Last Updated: Monday, November 12, 2012
Bookmark and Share
Medical experts feared personal genetic test results might drive overuse of expensive medical care.

People have increasing opportunities to participate in genetic testing that can indicate their range of risk for developing a disease.

Receiving these results does not appreciably drive up or diminish test recipients' demand for potentially costly follow-up health services, according to a study performed by researchers at the National Institutes of Health and colleagues at other institutions.

The study in the May 17, 2012 early online issue of Genetics in Medicine was done by investigators with the Multiplex Initiative, a multi-center collaborative initiative involving investigators from the National Institutes of Health's Intramural Research Program, Group Health Cooperative in Seattle, and the Henry Ford Health System in Detroit.

The tests are available from a growing number of commercial producers, and health care providers have been uncertain whether people who received information only about risk would follow up by demanding diagnostic testing to monitor for predicted illnesses.

The study is the first to use electronic health records - rather than self-reported behavior - to measure the impact of genetic testing on the subsequent consumption of health services by commercially insured, healthy adults. Self reports, which can be affected by memory lapses and other problems, tend to be less accurate.

"We need to understand the impact of genomic discoveries on the health care system if these powerful technologies are going to improve human health," said Dan Kastner, M.D., Ph.D., scientific director and head of the National Human Genome Research Institute's (NHGRI) Division of Intramural Research. "We are still learning how to integrate new genomic discoveries into clinical care effectively and efficiently."

"There are a lot of unanswered questions about how genetic test results can be used to guide people towards making positive lifestyle and health behavior changes," said Colleen McBride, Ph.D., chief of NHGRI's Social and Behavioral Research Branch. "This study goes a long way towards bringing data to these debates and shows that people are not likely to make inappropriate demands of health delivery systems if they are properly informed about the limitations of genetic tests."

Genetic tests, such as those used in this study, can detect common variants of genes associated with modest alterations in the chances of developing particular diseases. The term multiplex refers to simultaneously performing multiple genetic tests on a single blood sample.

The study included 217 healthy people between the ages of 25 and 40 who elected to participate in genetic susceptibility testing offered by their health plan. The researchers analyzed health care usage by the participants in the 12 months before genetic testing and the 12 months following the testing. They also compared the test group's behavior with a group of about 400 similar plan members who declined the testing offer.

The researchers counted the number of physician visits and laboratory tests or procedures the people received, particularly those services associated with four of the eight conditions tested by the multiplex panel.

Most of the procedures or screening tests that were counted are not among those currently recommended for people in this age group who don't have symptoms. The researchers found that participants in genetic testing did not change their overall use of health care services compared with those not tested.

All of the individuals who elected to undergo the multiplex test carried at least one at-risk genetic marker, with the majority carrying an average of nine at-risk variants.

The tests performed for the Multiplex Initiative include a set of genetic variants reliably associated with an increase in disease risk and for which some corrective health behavior has been shown to prevent illness.

Having a risk version of one of the 15 genes on the multiplex genetic test does not mean that a person is certain to get the condition - only that he or she might have a slightly greater chance of developing the health condition, explained Dr. McBride. There are many things other than genetics that contribute to the risk of common diseases, including lifestyle factors such as diet, exercise, smoking and sun exposure.

"Much is written about using genetics to personalize health care," said co-author Lawrence C. Brody, Ph.D., chief of NHGRI's Genome Technology Branch. "Some think that this new generation of genetic tests will be a very positive addition to medicine; others believe they have the potential to make things worse."

Dr. Brody designed the panel of genetic tests used in the Multiplex Initiative, consisting of 15 genetic markers that play roles in eight common diseases, including type 2 diabetes, coronary heart disease, high blood cholesterol, high blood pressure, osteoporosis, lung cancer, colorectal cancer and melanoma.

The Multiplex Initiative was launched in May 2007 by the NHGRI Division of Intramural Research and the National Cancer Institute, both at NIH, along with Group Health Cooperative in Seattle and the Henry Ford Health System in Detroit.

For the first two years of the study, the investigators accumulated data from 2,000 Detroit area residents who were offered a multiplex genetic test for eight common conditions.

Once enrolled, participants were asked to review information online about the multiplex genetic test and to decide whether they were interested in taking the test. Those who agreed to genetic testing met with a research educator, who provided more information about the risks and benefits of testing, and obtained the patient's written consent.

Test results were mailed to participants. Trained research educators called the participants to help them interpret and understand their results. The study also included follow-up interviews with participants three months after they received their results.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Cellular Factors that Shape the 3D Landscape of the Genome Identified
Researchers have identified 50 cellular factors required for the proper 3D positioning of genes by using novel large-scale imaging technology.
Tuesday, August 18, 2015
Nuclear Process in the Brain That May Affect Disease Uncovered
Scientists have shown that the passage of molecules through the nucleus of a star-shaped brain cell, called an astrocyte, may play a critical role in health and disease.
Tuesday, August 18, 2015
Tell-tale Biomarker Detects Early Breast Cancer in NIH-funded Study
The study published online in the issue of Nature Communications.
Thursday, August 13, 2015
Scientists Adopt New Strategy to Find Huntington’s Disease Therapies
Large, international NIH-supported study uses precision medicine to tackle neurological disorders.
Tuesday, August 11, 2015
Study Shows Promise of Precision Medicine for Most Common Type of Lymphoma
The study appeared online July 20, 2015, in Nature Medicine.
Tuesday, July 21, 2015
NIH Study Identifies Gene Variant Linked to Compulsive Drinking
Mice carrying the Met68BDNF gene variant would consume excessive amounts of alcohol.
Tuesday, July 21, 2015
In Blinding Eye Disease, Trash-Collecting Cells Go Awry, Accelerate Damage
NIH research points to microglia as potential therapeutic target in retinitis pigmentosa.
Friday, July 03, 2015
Potential Therapeutic for Blinding Eye Disease
NIH research points to microglia as potential therapeutic target in retinitis pigmentosa.
Thursday, July 02, 2015
NCI-MATCH Trial will Link Targeted Cancer Drugs to Gene Abnormalities
Precision medicine trial will open to patient enrollment in July.
Tuesday, June 09, 2015
A New Role for Zebrafish: Larger Scale Gene Function Studies
A relatively new method of targeting specific DNA sequences in zebrafish could dramatically accelerate the discovery of gene function and the identification of disease genes in humans.
Monday, June 08, 2015
NIH Researchers Pilot Predictive Medicine by Studying Healthy People’s DNA
New study sequence the genomes of healthy participants to find “putative,” or presumed, mutations.
Friday, June 05, 2015
Linking Targeted Cancer Drugs to Gene Abnormalities
Investigators at the NIH have announced a series of clinical trials that will study drugs or drug combinations that target specific genetic mutations.
Wednesday, June 03, 2015
Scientists Create Mice with a Major Genetic Cause of ALS and FTD
NIH-funded study provides new platform for testing treatments for several neurodegenerative disorders.
Friday, May 22, 2015
Mice With a Major Genetic Cause of ALS and FTD Created
NIH-funded study provides new platform for testing treatments for several neurodegenerative disorders.
Thursday, May 21, 2015
New Insights into How DNA Differences Influence Gene Activity, Disease Susceptibility
NIH-funded pilot study provides a new resource about variants across the human genome.
Friday, May 08, 2015
Scientific News
Poor Survival Rates in Leukemia Linked to Persistent Genetic Mutations
For patients with an often-deadly form of leukemia, new research suggests that lingering cancer-related mutations – detected after initial treatment with chemotherapy – are associated with an increased risk of relapse and poor survival.
Searching Big Data Faster
Theoretical analysis could expand applications of accelerated searching in biology, other fields.
Growing Hepatitis C in the Lab
Recent discovery allows study of naturally occurring forms of hepatitis C virus (HCV) in the lab.
Inciting an Immune Attack on Cancer Cells
A new minimally invasive vaccine that combines cancer cells and immune-enhancing factors could be used clinically to launch a destructive attack on tumors.
Reprogramming Cancer Cells
Researchers on Mayo Clinic’s Florida campus have discovered a way to potentially reprogram cancer cells back to normalcy.
Genetic Overlapping in Multiple Autoimmune Diseases May Suggest Common Therapies
CHOP genomics expert leads analysis of genetic architecture, with eye on repurposing existing drugs.
Surprising Mechanism Behind Antibiotic-Resistant Bacteria Uncovered
Now, scientists at TSRI have discovered that the important human pathogen Staphylococcus aureus, develops resistance to this drug by “switching on” a previously uncharacterized set of genes.
How DNA ‘Proofreader’ Proteins Pick and Edit Their Reading Material
Researchers from North Carolina State University and the University of North Carolina at Chapel Hill have discovered how two important proofreader proteins know where to look for errors during DNA replication and how they work together to signal the body’s repair mechanism.
Fat in the Family?
Study could lead to therapeutics that boost metabolism.
Tissue Bank Pays Dividends for Brain Cancer Research
Checking what’s in the bank – the Brisbane Breast Bank, that is – has paid dividends for UQ cancer researchers.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!