" "
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Extra Chromosome 21 Removed from Down Syndrome Cell Line

Published: Monday, November 12, 2012
Last Updated: Monday, November 12, 2012
Bookmark and Share
Scientists have succeeded in removing the extra copy of chromosome 21 in cell cultures derived from a person with Down syndrome, a condition in which the body’s cells contain three copies of chromosome 21.

A triplicate of any chromosome is a serious genetic abnormality called a trisomy. Trisomies account for almost one-quarter of pregnancy loss from spontaneous miscarriages, according to the research team. Besides Down syndrome (trisomy 21), some other human trisomies are extra Y or X chromosomes, and Edwards syndrome (trisomy 18) and Patau syndrome (trisomy 13), both of which have extremely high newborn fatality rates.

In their report appearing in the Nov. 2 edition of Cell Stem Cell, a team led by Dr. Li B. Li of the UW Department of Medicine described how they corrected trisomy 21 in human cell lines they grew in the lab.  The senior scientists on the project were gene therapy researchers Dr. David W. Russell, professor of medicine and biochemistry, and Dr. Thalia Papayannopoulou, professor of medicine.

The targeted removal of a human trisomy, they noted, could have both clinical and research applications.

In live births, Down syndrome is the most frequent trisomy. The condition has characteristic eye, facial and hand features, and can cause many medical problems, including heart defects, impaired intellect, premature aging and dementia, and certain forms of leukemia, a type of blood cancer.

“We are certainly not proposing that the method we describe would lead to a treatment for Down syndrome,” Russell said.  “What we are looking at is the possibility that medical scientists could create cell therapies for some of the blood-forming disorders that accompany Down syndrome.”

For example, he said, someday Down syndrome leukemia patients might have stem cells derived their own cells, and have the trisomy corrected in these lab-cultured cells.  They could then receive a transplant of their own stem cells – minus the extra chromosome – or healthy blood cells created from their fixed stem cells and that therefore don’t promote leukemia, as part of their cancer care.

He added that the ability to generate stem cells with and without trisomy 21 from the same person could lead to better understanding of how problems tied to Down syndrome originate.  The cell lines would be genetically identical, except for the extra chromosome. Researcher could contrast, for example how the two cell lines formed brain nerve cells, to learn the effects of trisomy 21 on neuron development, which might offer insights into the lifelong cognitive impairments and adulthood mental decline of Down syndrome. Similar comparative approaches could seek the underpinnings of untimely aging or defective heart tissue in this genetic condition.

The formation of trisomies is also a problem in regenerative medicine research using stem cells. Russell and his team observed that their approach could also be used to revert the unwanted trisomies that often arise in creating stem cell cultures.

Figuring out the exact techniques for removing the extra chromosome was tricky, Russell said, but his colleague Li worked hard to solve several challenges during his first attempts at deriving the engineered cell lines.

“Dr. Li’s achievement was a tour de force,” Russell said.

The researchers used an adeno-associated virus as a vehicle to deliver a foreign gene called TKNEO into a particular spot on chromosome 21, precisely within a gene called APP, which sits on the long arm of the chromosome.  The TKNEO transgene was chosen because of its predicted response to positive and negative selection in specific laboratory growth mediums.  When grown in conditions that selected against TKNEO, the most common reason for cells to survive was the spontaneous loss of the chromosome 21 harboring the transferred gene. Other survival tactics were point mutations, which are single, tiny alterations in DNA base pairs; gene silencing, which meant TKNEO was “turned off” by the cell; or deletion of the TKNEO.

Russell explained a key advantage of this technique for getting rid of the entire extra chromosome: Once it was gone, nothing was left behind.

“Gene therapy researchers have to be careful that their approaches do not cause gene toxicity,” he said. This means, for example, that removal of a chromosome must not break or rearrange the remaining genetic code. This method shouldn’t do that.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Draining Speeds up Bioassays
New methodology means biological assays that once took hours could instead take minutes.
Thursday, January 14, 2016
$12-Million Awarded to Study the Human Genome in 4-D
Project seeks to understand how a 6.5 feet of DNA folds to fit inside a cell.
Tuesday, October 20, 2015
Editing Genes to Create HIV Killers
Seattle scientists have managed to genetically transform human cells in the lab from HIV targets to HIV killers, and the technique could have implications for cancer and other diseases.
Monday, October 05, 2015
A New Single-Molecule Tool to Observe Enzymes at Work
A team of scientists at the University of Washington and the biotechnology company Illumina have created an innovative tool to directly detect the delicate, single-molecule interactions between DNA and enzymatic proteins.
Wednesday, September 30, 2015
Genetic Errors Linked To Aging Underlie Leukemia That Develops After Cancer Treatment
New research by Daniel Link, MD, and colleagues at The Genome Institute at Washington University has revealed that mutations that accumulate randomly as a person ages can play a role in a fatal form of leukemia that develops after treatment for another cancer.
Wednesday, December 10, 2014
Genetically Identical Bacteria Can Behave in Radically Different Ways
Although a population of bacteria may be genetically identical, individual bacteria within that population can act in radically different ways.
Friday, January 03, 2014
Depletion of ‘Traitor’ Immune Cells Slows Cancer Growth in Mice
When a person has cancer, some of the cells in his or her body have changed and are growing uncontrollably.
Wednesday, September 25, 2013
Breakthrough in Detecting DNA Mutations Could Help Treat Tuberculosis and Cancer
The slightest variation in a sequence of DNA can have profound effects.
Tuesday, July 30, 2013
Chemical Makes Blind Mice See
Researchers who discovered the chemical are working on an improved compound that may someday allow people with degenerative blindness to see again.
Wednesday, August 01, 2012
Exome Sequencing of Health Condition Extremes Can Reveal Susceptibility Genes
Comparing the DNA from patients at the best and worst extremes of a health condition can reveal genes for resistance and susceptibility.
Tuesday, July 17, 2012
Gene Therapy Delivered Once to Blood Vessel Wall Protects Against Atherosclerosis in Rabbit Studies By Leila Gray
The results came from research in rabbits, published July 19 in the journal Molecular Therapy.
Tuesday, July 26, 2011
Genetic Region Linked to a Five Times Higher Lung Cancer Risk
A narrow region on chromosome 15 contains genetic variations strongly associated with familial lung cancer, says a study conducted by scientists at Washington University.
Monday, September 22, 2008
Eight new Human Genome Projects Offer Large-Scale Picture of Genetic Differences among Individual
A nationwide consortium led by the University of Washington has completed the first sequence-based map of structural variations in the human genome.
Tuesday, May 06, 2008
Cancer Cells More Likely to Genetically Mutate
Researcher at University of Washington find that the cells who become cancerous can also become 100 times more likely to genetically mutate than regular cells.
Friday, February 23, 2007
Scientific News
Light Signals from Living Cells
Fluorescent protein markers delivered under high pressure.
Counting Cancer-busting Oxygen Molecules
Researchers from the Centre for Nanoscale BioPhotonics (CNBP), an Australian Research Centre of Excellence, have shown that nanoparticles used in combination with X-rays, are a viable method for killing cancer cells deep within the living body.
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
Switch Lets Salmonella Fight, Evade Immune System
Researchers at the University of Illinois at Chicago have discovered a molecular regulator that allows salmonella bacteria to switch from actively causing disease to lurking in a chronic but asymptomatic state called a biofilm.
Genetic Cause of Rare Allergy
Institute has identified a genetic mutation responsible for a rare form of inherited hives induced by vibratory urticaria.
Mitochondria Shown to Trigger Cell Ageing
An international team of scientists has for the first time shown that mitochondria, the batteries of the cells, are essential for ageing.
Cancer Cells Kill Off Healthy Neighbours
Cancer cells create space to grow by killing off surrounding healthy cells, according to UK researchers working with fruit flies.
Validating the Accuracy of CRISPR-Cas9
IBS Researchers create multiplex Digenome-seq to find errors in CRISPR-Cas9 processes.
Cancer Drug Target Visualized at Atomic Resolution
New study using cryo-electron microscopy shows how potential drugs could inhibit cancer.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!