Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Study Offers Clues to Cause of Kids’ Brain Tumors

Published: Tuesday, November 20, 2012
Last Updated: Tuesday, November 20, 2012
Bookmark and Share
Insights from a genetic condition that causes brain cancer are helping scientists better understand the most common type of brain tumor in children.

In new research, scientists at Washington University School of Medicine in St. Louis have identified a cell growth pathway that is unusually active in pediatric brain tumors known as gliomas. They previously identified the same growth pathway as a critical contributor to brain tumor formation and growth in neurofibromatosis-1 (NF1), an inherited cancer predisposition syndrome.

“This suggests that the tools we’ve been developing to diagnose and treat NF1 may also be helpful for sporadic brain tumors,” says senior author David H. Gutmann, MD, PhD, the Donald O. Schnuck Family Professor of Neurology.

The findings appear Dec. 1 in Genes and Development.

NF1 is among the most common tumor predisposition syndromes, but it accounts for only about 15 percent of pediatric low-grade gliomas known as pilocytic astrocytomas. The majority of these brain tumors occur sporadically in people without NF1.

Earlier research showed that most sporadic pilocytic astrocytomas possess an abnormal form of a signaling protein known as BRAF. In tumor cells, a piece of another protein is erroneously fused to the business end of BRAF.

Scientists suspected that the odd protein fusion spurred cells to grow and divide more often, leading to tumors. However, when they gave mice the same aberrant form of BRAF, they observed a variety of results. Sometimes gliomas formed, but in other cases, there was no discernible effect or a brief period of increased growth and cell division. In other studies, the cells grew old and died prematurely.

Gutmann, director of the Washington University Neurofibromatosis Center, previously showed that mouse NF1-associated gliomas arise from certain brain cells.

According to Gutmann, the impact of abnormal NF1 gene function on particular cell types helps explain why gliomas are most often found in the optic nerves and brainstem of children with NF1 — these areas are where the susceptible cell types reside.

With that in mind, Gutmann and his colleagues tested the effects of the unusual fusion BRAF protein in neural stem cells from the cerebellum, where sporadic pilocytic astrocytomas often form, and in cells from the cortex, where the tumors almost never develop.

“Abnormal BRAF only results in increased growth when it is placed in neural stem cells from the cerebellum, but not the cortex,” Gutmann says. “We also found that putting fusion BRAF into mature glial cells from the cerebellum had no effect.”

When fusion BRAF causes increased cell proliferation, postdoctoral fellows Aparna Kaul, PhD, and Yi-Hsien Chen, PhD, showed that it activates the same cellular growth pathway, called mammalian target of rapamycin (mTOR), that is normally also controlled by the NF1 protein. An extensive body of research into the mTOR pathway already exists, including potential treatments to suppress its function in other forms of cancer.

“We may be able to leverage these insights and our previous work in NF1 to improve the treatment of these common pediatric brain tumors, and that’s very exciting,” Gutmann says.

Gutmann and his colleagues are now working to identify more of the factors that make particular brain cells vulnerable to the tumor-promoting effects of the NF1 gene mutation and fusion BRAF. They are also developing animal models of sporadic pilocytic astrocytoma for drug discovery and testing.

Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,100+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Breast Tumors Evolve in Response to Hormone Therapy
Researchers have suggested that analyzing a single sample of the breast tumor is insufficient for understanding how a patient should best be treated.
Friday, August 12, 2016
Bacteriophages Demonstrate Vast Diversity
Microbial habitats worldwide likely shaped by RNA viruses that eat bacteria.
Wednesday, March 30, 2016
New Handheld, Pen-Sized Microscope to ID Cancer Cells
Surgeons removing a malignant brain tumor don’t want to leave cancerous material behind. But they’re also trying to protect healthy brain matter and minimize neurological harm.
Thursday, January 28, 2016
Uncovering Hard-to-Detect Cancer Mutations
Findings could help identify patients who would benefit from existing drugs.
Wednesday, December 16, 2015
$8 Million to Study Gene-Lifestyle Interactions on Heart Health
Four-year grant will support the first large-scale, multiethnic statistical analysis of risk factors for cardiovascular disease.
Wednesday, April 09, 2014
Unusual Comparison Nets New Sleep Loss Marker
Paul Shaw, PhD, a researcher at Washington University School of Medicine in St. Louis, uses what he learns in fruit flies to look for markers of sleep loss in humans.
Wednesday, May 08, 2013
Scientific News
Integrated Omics Analysis
Studying multi-omics promises to give a more holistic picture of the organism and its place in its ecosystem, however despite the complexities involved those within the field are optimistic.
Unravelling the Role of Key Genes and DNA Methylation in Blood Cell Malignancies
Researchers from the University of Nebraska Medical Center have demonstrated the role of Dnmt3a in safeguarding normal haematopoiesis.
Agilent Presents Early Career Professor Award to Dr. Roeland Verhaak
JAX professor recognized for the development and implementation of workflows for the analysis of big-data from transcriptomics to next generation sequencing approaches.
Ovarian Cancer Insight
Study showed tumours release cytokines to attract macrophages, which secrete growth factors that in turn promote tumour growth.
Bacterial Genes Boost Current in Human Cells
Borrowing and tweaking bacterial genes to enhance electrical activity might treat heart, nervous system injury.
Less Frequent Cervical Cancer Screening
HPV-vaccinated women may only need one screening every 5 to 10 years with screening starting later in life.
Questioning the Safety of Selenium to Combat Cancer
Research indicates the need for change in practice as selenium supplements cannot be recommended for preventing colorectal cancer.
Supercomputers Could Improve Cancer Diagnostics
Researchers push the boundaries of cancer research through high-performance computing to map the human immunone.
Transgenomic, Precipio Diagnostics Merger
Merger will creates a robust diagnostic platform focused on improving accuracy of cancer diagnoses.
Leukaemia Cell Movement Gives Clues to Tackling Treatment-Resistant Disease
Researchers at Imperial College London have suggested that the act of moving itself may help the cells to survive, possibly through short-lived interactions with an array of our own cells.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,100+ scientific videos