Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Oxford's Role in New Meningitis Vaccine

Published: Thursday, November 22, 2012
Last Updated: Thursday, November 22, 2012
Bookmark and Share
EMA recommends Novartis' Bexero (MenB) vaccine to protect children against meningitis B.

A vaccine to protect children against meningitis B - the bacterial strain that now causes the vast majority of meningitis cases in this country - could soon be introduced in the UK.

On Friday the European Medicines Agency (EMA) recommended Novartis' Bexero (MenB) vaccine for approval for babies 2 months and up.

The step paves the way for a Europe-wide license for the vaccine, and for national governments to decide whether to include it in childhood immunization programmes.

'As paediatricians we have seen the devastating effect that MenB disease can have on young children and adolescents, so welcome the recommendation for approval for this vaccine as an important step towards the prevention of childhood meningitis,' says Dr Matthew Snape of the Oxford Vaccine Group, who is hopeful that the vaccine can be introduced into the routine immunization schedule in the near future.

Oxford researchers, including Matthew Snape and others, played a significant role in the almost 20 years of work behind the development of the Novartis vaccine, from the early stages to clinical trials, as our earlier news story reported.

Matthew takes up the story: 'Developing a vaccine against MenB infections has been very difficult primarily because, unlike the MenC organism [a strain for which a successful vaccine was introduced in 1999], the outer coating of MenB is not recognized by the immune system.

'Over several decades many different proteins had been studied as vaccine targets without success. To overcome this, Professor Richard Moxon and others developed a novel approach whereby the MenB bacterium's DNA blueprint was used as a tool to find new protein targets,' says Matthew.

Matthew continued, 'This vaccine is a direct result of this work. It represents an entirely new approach to vaccine development, and one that has important implications for developing vaccines against other diseases.'

Professor Moxon of the Department of Paediatrics at Oxford University explains: 'The story of the underpinning science goes back to 1995. This is when the first complete genome sequence of the bacterium Haemophilus influenzae was completed and published.'

This advance opened up the possibility of using the sequenced genomes of other disease-causing bacteria as a new approach to making vaccines, as Richard later outlined in the Lancet.

After all, a complete genome sequence would provide an inventory of all the genes encoding every factor responsible for the virulence of the disease, or that would prompt an immune response in the body. Vaccines that target one or more of these genes could then be developed.

'There already was a H. influenzae (type b) vaccine, so an obvious candidate for using a genomic approach was Neisseria meningitidis (meningococcus),' says Richard, 'and specifically the B strain, since for technical reasons a vaccine for this strain needed a completely new approach from that used for the ultimately successful MenC vaccine.'

Oxford had been one of the main collaborators on the project to sequence the entire DNA of H. influenzae, Richard explains, and he was then in position to persuade Craig Venter - the US scientist pioneering novel DNA sequencing methods at his private research institution, The Institute for Genomic Research - to consider sequencing meningococcus B.

Richard's laboratory in the Department of Paediatrics sent DNA from a B strain of meningococcus to Venter's group at TIGR in 1995. The strain was one isolated from an outbreak of meningitis in Stroud in 1981.

Richard explains that after some preliminary sequencing work began to demonstrate how powerful the genomic approach could be, Chiron Vaccines in Siena, Italy, came in wanting to collaborate and offering serious project funding.

The MenB project was initiated in 1996 involving Chiron (which was later acquired by Novartis), Oxford University and TIGR in Maryland, USA.

'Between 1996 and 2000, the sequencing and analysis of the B strain was carried out and culminated in two back-to-back papers in Science,' says Richard. 'The second of these papers identified a number of candidate vaccine antigens which, after much further research, culminated in formulations that went into clinical trials.

'The Oxford Vaccine Group was a huge player in the clinical trials that resulted in the decision by EMA,' says Richard.

The Oxford Vaccine Group, also in the Department of Paediatrics, has been involved in 7 different clinical trials of the MenB vaccine, enrolling a total of over 1000 participants (over 800 children and more than 250 students). These included the first studies in children which were performed in 2006.

Professor Andrew Pollard, head of the Oxford Vaccine Group, has been the chief investigator for all the studies in children conducted in the UK, and he and Matthew have been closely involved in the design, planning and analysis of results for these studies.

Matthew says: 'The initial paediatric studies conducted in 2006 enrolled 2 month old and 6 month old children to receive one of two formulations of this vaccine. One of these formulations induced a broad immune response against multiple strains of the MenB bacterium, and was therefore taken forward for further assessment in a larger study conducted across five European countries.'

The results from this larger study, in which the Oxford Vaccine Group was again involved, enrolling 400 of the 1800 infant participants, provided data critical to determining how the MenB vaccine might be incorporated into existing child immunization schedules.

So what can we expect from the new MenB vaccine now it's on its way to being licensed? After all the meningitis C vaccine has been enormously successful. There have been only 2 deaths in children and young people under 20 in the last 5 years, compared to 78 deaths in the single year before the vaccine was introduced.

Matthew says: 'Each year between 460 and 860 children and adolescents suffer either meningitis or septicaemia (blood poisoning) due to MenB in England and Wales, with the highest rates being in children below 2 years of age.

'Calculating what proportion of these cases are likely to be prevented by immunization with the MenB vaccine has been a considerable challenge, as the proteins targeted by the MenB vaccine vary between different MenB bacteria. But early estimates are in the region of 75%, which would be an enormous step forward in the goal of preventing childhood meningitis.'

He adds: 'As with all new vaccines, ongoing surveillance is going to be the key to understanding how the vaccine can be employed most effectively. One key question is whether using the vaccine in a large proportion of the population will reduce circulation of the organism in the community, thus providing "herd immunity" to people who have not received the vaccine.'


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Type 2 Diabetes Genetics Revealed
The largest study of its kind into type 2 diabetes has produced the most detailed picture to date of the genetics underlying the condition.
Wednesday, July 13, 2016
Genetic Research Can Significantly Improve Drug Development
With drug development costs topping $1.2bn (£850 million) to get a single treatment to the point it can be sold and used in the clinic, could genetic analysis save hundreds of millions of dollars?
Friday, June 17, 2016
Genes That Increase Children's Risk Of Blood Infection Identified
A team led by Oxford University has identified genes that make certain children more susceptible to invasive bacterial infections by performing a large genome-wide association study in African children.
Friday, May 27, 2016
Origin of a Species
A study by researchers at the Wellcome Trust Centre for Human Genetics at Oxford University has uncovered the key role played by a single gene in how groups of animals diverge to form new species.
Monday, February 15, 2016
Identifying Drug Resistance Traits
Scientists have developed an easy-to-use computer program that can quickly analyse bacterial DNA from a patient's infection and predict which antibiotics will work, and which will fail due to drug resistance.
Tuesday, December 22, 2015
Faster, Cheaper TB Diagnosis
Whole Genome Sequencing is a faster, cheaper and more effective way of diagnosing tuberculosis says a new study.
Wednesday, December 09, 2015
Why we Still Don’t Have Personalised Medicine
15 years after sequencing the human genome we still do not have the promised personalised medicine, why is this?
Friday, December 04, 2015
The Secret Behind the Power of Bacterial Sex
Migration between different communities of bacteria is the key to the type of gene transfer that can lead to the spread of traits such as antibiotic resistance, according to researchers at Oxford University.
Tuesday, November 24, 2015
Mini DNA Sequencer’s Data Belies its Size
A miniature DNA sequencing device that plugs into a laptop and was developed by Oxford Nanopore has been tested by an open, international consortium, including Oxford University researchers.
Tuesday, October 20, 2015
New Insight into Recombination and Sex Chromosomes
Not only does the platypus have some odd physical features, an updated version of its genome has also underscored the unusual genetic characteristics that it harbors.
Tuesday, May 12, 2015
Protein Clue To Sudden Cardiac Death
A protein has been shown to have a surprising role in regulating the 'glue' that holds heart cells together, a finding that may explain how a gene defect could cause sudden cardiac death.
Tuesday, February 17, 2015
Investment In Cancer Research At Oxford University
Centre for Molecular Medicine to focus on cancer genomics and molecular diagnostics, through a partnership with the Chan Soon-Shiong Institute.
Friday, October 24, 2014
Genetic Tracking Identifies Cancer Stem Cells in Patients
The gene mutations driving cancer have been tracked for the first time in patients back to a distinct set of cells at the root of cancer – cancer stem cells.
Friday, May 16, 2014
Eating Organic Food Doesn't Lower Overall Cancer Risk
Women who always or mostly eat organic foods have the same likelihood of developing cancer as women who eat conventionally produced foods.
Tuesday, April 01, 2014
New Trial of Personalized Cancer Treatment Begins in Oxford
Phase I trial in Oxford will investigate a new drug, called CXD101.
Tuesday, March 18, 2014
Scientific News
Liquid Biopsies: Miracle Diagnostic or Next New Fad?
Thanks to the development of highly specific gene-amplification and sequencing technologies liquid biopsies access more biomarkers relevant to more cancers than ever before.
Mutations in DNA-Repair Genes Found in Advanced Prostate Cancers
New findings indicate that nearly 12% of male advanced prostate cancer sufferers have inherited mutation in DNA-repair genes.
Ice Bucket Challenge Instrumental in Gene Discovery
Donations from the ALS Ice Bucket Chellenge allowed for the largest-ever study of inherited ALS, which identified a new ALS gene.
Triple-Action Therapy Patch Shows Promise
Patch that delivers drug, gene, and light-based therapy to tumor sites shows promising results in mice.
Cancer Gene-Drug Combinations Ripe for Precision Medicine
The study aims to expand the number of cancer gene mutations that can be paired with a precision therapy.
Targeting BRAF Mutations in Thyroid Cancer
Treating metastatic thyroid cancer patients harboring a BRAF mutation with vemurafenib showed anti-tumor activity in a third of patients.
Colon Cancer Blocked in Mice
Case Western Reserve University Researchers block common type of colon cancer tumour in mice, laying groundwork for human clinical trial.
Cancer Related Immune Response Genes Uncovered
Researchers at the SBP have identified over 100 new genetic regions that affect the immune response to cancer.
New Therapeutic Targets For Small Cell Lung Cancer Identified
Researchers at UTSW Medical Center have identified a protein termed ASCL1 that is essential to the development of small cell lung cancer.
Deciphering Inactive X Chromosomes
Untangling the Barr body of inactive X chromosomes valuable for understanding chromosome structure and gene expression.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!