Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Massive Genomics Project Answers Questions, Poses New Ones in Health, Genetics and Aging

Published: Thursday, November 22, 2012
Last Updated: Thursday, November 22, 2012
Bookmark and Share
Initial findings focus on telomere trends with ethnicity, socioeconomic status, lifestyle.

People with the shortest telomeres really do have a date with the Grim Reaper, according to new data coming out of the largest and most diverse genomics, health and longevity project in the nation.

Among the initial results from the Grand Opportunity Project on genetics, health, aging and the environment – a joint project between Kaiser Permanente and UCSF – is the finding that the 10 percent of people with the shortest telomere lengths had more than a 20 percent higher risk of dying during the ensuing three years than any other group.

But whether these shortened DNA nibs at the end of our chromosomes are harbingers of death or actually contribute to our downfall remains in question.

The new findings, and the increasing questions they pose, are some of the first results to emerge from the Kaiser Permanente-UCSF project that was launched in 2009 as the scientific equivalent of the large-scale infrastructure projects of the 1930s, such as the Golden Gate Bridge and the Hoover Dam.

Joining Forces for Massive Genetic Analysis

Supported with $25 million through the American Recovery & Reinvestment Act (ARRA), the project set out to combine the strong epidemiological research and comprehensive, consistent health records at Kaiser Permanente with UCSF’s strengths in genetics and telomere research, to create a national resource that would transform health science into the foreseeable future.

The overall project links a genetic analysis of 110,266 saliva samples collected at Kaiser Permanente of Northern California over the past five years to decades of Kaiser Permanente health records, as well as UCSF measurements of longevity markers and state environmental exposures. That health data includes thousands of pharmacy records and years of cholesterol and lipid tests, as well as mammograms, EKGs and MRI scans, all performed in the same laboratories with consistent techniques.

That is an invaluable resource, the researchers said, and already is starting to show results.

“We discovered 103 different genes underlying HDL and LDL cholesterol and triglyceride levels, with p values (statistical significance) that have never been seen before, and there’s more to come,” said Neil Risch, PhD, director of the UCSF Institute for Human Genetics, who is jointly leading the overall project with Cathy Schaefer, PhD, in the Kaiser Permanente Division of Research.

“What underlies these traits and diseases are many, many genes,” said Risch, a statistical geneticist who already has uncovered numerous genetic SNPS (single nucleotide polymorphisms) through this project that have never before been detected. “To see them all, you need very large samples. That’s what we have in this project.”

Its first results are both substantiating and refuting findings from smaller projects, while posing new questions for scientists to tackle in the years to come.

“We’re at the beginning of some really interesting analyses of telomere length,” said Schaefer, an epidemiologist who led the analyses of the telomere data, after the telomeres were measured in the UCSF laboratory of Nobel laureate Elizabeth Blackburn, PhD.

“We know that telomere length declines with age and several studies have shown that telomere length is related to a number of diseases,” Schaefer said. “The question is whether the length is simply a marker of cumulative experiences, or whether it plays a direct role in health.”

Some Surprising Findings on Telomeres

The initial findings, which stem from a one-year extension to begin analyses using the remainder of the team’s ARRA funding, were presented as talks and posters during the American Society of Human Genetics conference in San Francisco on Nov. 7-8.

Among the findings were a number of genes connected to diabetes, cancer and autoimmune diseases, among other health conditions.

There also was clear evidence that telomeres are longer in African-Americans and in people with higher educational status, while they are shorter for people in low socioeconomic communities. Telomeres also rise sharply in men who are over 75 years old and in women over 80, which the researchers said probably means that these individuals – through genetics or long-term lifestyle – were programmed on a cellular basis to outlast their peers.

Smoking and alcohol consumption also were directly linked to shorter telomeres, with a direct correlation between the number of packs of cigarettes smoked during a lifetime and shorter DNA nibs on an individual’s chromosomes, which the researchers said validated the link between what we know about overall health conditions and our cellular health. But they found no link between exercise and telomere length, which has previously been reported.

The great surprise so far, Schaefer said, was in participants with the highest Body Mass Index, who consistently showed longer telomeres. That’s despite extensive data showing that these individuals have more health problems and worse health prognoses overall.

The UCSF Institute for Human Genetics, through its Genomics Core Facility, also derived genetic information at 700,000 or more locations in the genome for each individual.  The resulting combination of health and genetic data, which includes over 70 billion genotypes and took two years to collect and quantify, is currently available as a resource through the Kaiser Permanente-UCSF team for external researchers studying the genetic or environmental basis of disease.

Later this fall, much of the data also will be incorporated into a national database known as dbGAP, run by the National Institutes of Health, which will be available to researchers worldwide.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

RNA-Based Drugs Give More Control Over Gene Editing
CRISPR/Cas9 gene editing technique can be transiently activated and inactivated using RNA-based drugs, giving researchers more precise control in correcting and inactivating genes.
Monday, November 23, 2015
Clearest Ever Images of Enzyme that Plays Key Roles in Aging, Cancer
UCLA-led research on telomerase could lead to new strategies for treating disease
Monday, October 19, 2015
Crop Cure
Scientists in new center to use medical research techniques to help food crops withstand drought and climate change.
Friday, October 16, 2015
Rare Childhood Leukemia Reveals Surprising Genetic Secrets
A coalition of leukemia researchers led by scientists from UC San Francisco has discovered surprising genetic diversity in juvenile myelomonocytic leukemia (JMML), a rare but aggressive childhood blood cancer.
Thursday, October 15, 2015
Double Enzyme Hit May Explain Common Cancer Drug Side Effect
Mouse study suggests genomic screening before treatment may help prevent anemia.
Wednesday, October 14, 2015
New Autism Genes Are Revealed in Largest-Ever Study
Work draws more detailed picture of genetic risk, sheds light on sex differences in diagnosis.
Wednesday, September 30, 2015
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Tuesday, July 28, 2015
Simple Technology Makes CRISPR Gene Editing Cheaper
University of California, Berkeley, researchers have discovered a much cheaper and easier way to target a hot new gene editing tool, CRISPR-Cas9, to cut or label DNA.
Friday, July 24, 2015
Engineers Crack DNA Code of Autoimmune Disorders
Researchers have identified an unexpectedly general set of rules that determine which molecules can cause the immune system to become vulnerable to the autoimmune disorders lupus and psoriasis.
Wednesday, June 10, 2015
Genetic Markers for Detecting and Treating Ovarian Cancer
Custom bioinformatics algorithm identifies human mRNAs that distinguish ovarian cancer cells from normal cells and provide new therapeutic targets
Wednesday, May 27, 2015
Industry-Sponsored Academic Inventions Spur Increased Innovation
Analysis questions assumption that corporate support skews science toward inventions that are less useful than those funded by the government or non-profit organizations.
Monday, March 24, 2014
Researchers Change Cell Types by Flipping a Single Switch
New findings have identified a method for changing one cell type into another in a process called forced transdifferentiation.
Friday, December 06, 2013
Scientists Pinpoint Cell Type and Brain Region Affected by Gene Mutations in Autism
UCSF-led study zeroes in on when and where disrupted genes exert effects.
Tuesday, November 26, 2013
Digging Deeper Into Cancer
What a pathologist looks for in a Pap test sample, but hopes not to find, are oddly shaped cells with abnormally large nuclei. The same is true for prostate and lung cancer biopsies.
Tuesday, November 19, 2013
Nanotech Method Show Promise Against Pancreatic Cancer
Researchers at UCLA's Jonsson Comprehensive Cancer Center have developed a new technique for fighting deadly and hard-to-treat pancreatic cancer.
Monday, November 18, 2013
Scientific News
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Biologists Induce Flatworms to Grow Heads and Brains of Other Species
Findings shed light on role of a new kind of epigenetic signaling in evolution, could yield clues for understanding birth defects and regeneration.
Turning up the Tap on Microbes Leads to Better Protein Patenting
Mining millions of proteins could become faster and easier with a new technique that may also transform the enzyme-catalyst industry, according to University of California, Davis, researchers.
Mathematical Model Forecasts the Path of Breast Cancer
Chances of survival depend on which organs breast cancer tumors colonize first.
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
Tardigrade's Are DNA Master Thieves
Tardigrades, nearly microscopic animals that can survive the harshest of environments, including outer space, hold the record for the animal that has the most foreign DNA.
The Secret Behind the Power of Bacterial Sex
Migration between different communities of bacteria is the key to the type of gene transfer that can lead to the spread of traits such as antibiotic resistance, according to researchers at Oxford University.
Farming’s in Their DNA
Ancient genomes reveal natural selection in action.
GMO Food Animals Should be Judged by Product, Not Process
In a world with a burgeoning demand for meat, milk and eggs, regulatory policies around the use of biotechnologies in agriculture need to be based on the safety and attributes of those foods rather than on the methods used to produce them, says a UC Davis animal scientist.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos