Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Building with DNA Bricks

Published: Friday, November 30, 2012
Last Updated: Friday, November 30, 2012
Bookmark and Share
Harvard’s Wyss Institute creates versatile 3-D nanostructures.

Researchers at the Wyss Institute for Biologically Inspired Engineering at Harvard University have created more than 100 3-D nanostructures using DNA building blocks that function like Lego bricks — a major advance from the two-dimensional structures the same team built a few months ago.

In effect, the advance means researchers went from being able to build a flat wall of Legos to building a house. The new method, featured as a cover research article in the Nov. 30 issue of Science, is the next step toward using DNA nanotechnologies for more sophisticated applications than ever possible before, such as “smart” medical devices that target drugs selectively to disease sites, programmable imaging probes, templates for precisely arranging inorganic materials in the manufacturing of next generation computer circuits, and more.

The nanofabrication technique, called “DNA-brick self-assembly,” uses short, synthetic strands of DNA that work like interlocking Lego bricks.  It capitalizes on the ability to program DNA to form into predesigned shapes thanks to the underlying “recipe” of DNA base pairs: A (adenosine) only binds to T (thymine), and C (cytosine) only binds to G (guanine).

Earlier this year, the Wyss team reported in Nature how they could create a collection of two-dimensional shapes by stacking one DNA brick (42 bases in length) upon another.

But there’s a “twist” in the new method required to build in 3-D.

The trick is to start with an even smaller DNA brick (32 bases in length), which changes the orientation of every matched-up pair of bricks to a 90-degree angle — giving every two Legos a 3-D shape. In this way, the team can use these bricks to build “out” in addition to “up,” and eventually form 3-D structures, such as a 25-nanometer solid cube containing hundreds of bricks. The cube becomes a “master” DNA “molecular canvas”; in this case, the canvas was composed of 1,000 “voxels,” which correspond to eight base-pairs and measure about 2.5 nanometers in size — meaning this is architecture at its tiniest.

The master canvas is where the modularity comes in: By simply selecting subsets of specific DNA bricks from the large cubic structure, the team built 102 3-D structures with sophisticated surface features, as well as intricate interior cavities and tunnels.

“This is a simple, versatile, and robust method,” says Peng Yin, Wyss core faculty member and senior author on the study.

Another method used to build 3-D structures, called DNA origami, is tougher to use to build complex shapes, Yin said, because it relies on a long “scaffold” strand of DNA that folds to interact with hundreds of shorter “staple” strands — and each new shape requires a new scaffold routing strategy and hence new staples. In contrast, the DNA brick method does not use any scaffold strand and therefore has a modular architecture; each brick can be added or removed independently.

“We are moving at lightning speed in our ability to devise ever more powerful ways to use biocompatible DNA molecules as structural building blocks for nanotechnology, which could have great value for medicine as well as nonmedical applications,” says Wyss Institute Director Donald Ingber.

The research team led by Yin, who is also an assistant professor of systems biology at Harvard Medical School (HMS), included Wyss postdoctoral fellow Yonggang Ke and Wyss graduate student Luvena Ong. Another contributor was Wyss core faculty member William Shih, who also holds appointments at HMS and at the Harvard-affiliated Dana-Farber Cancer Institute. To learn more about the team’s work, visit its website.

The research was supported by the Office of Naval Research, the Army Research Office, the National Science Foundation, the National Institutes of Health, and the Wyss Institute for Biologically Inspired Engineering at Harvard University.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Farming’s in Their DNA
Ancient genomes reveal natural selection in action.
Tuesday, November 24, 2015
Exposure to Pesticides In Childhood Linked to Cancer
Young children who are exposed to insecticides inside their homes may be slightly more at risk for developing leukemia or lymphoma during childhood, according to a meta-analysis by Harvard T.H. Chan School of Public Health researchers.
Thursday, September 24, 2015
So Long, Snout
Research helps answer how birds got their beaks.
Thursday, August 20, 2015
Delivering Hope in Ovarian Cancer
Gene therapy blocked chemoresistant tumor growth in mice.
Tuesday, August 11, 2015
Expanding the Brain
A team of researchers has identified more than 40 new “imprinted” genes, in which either the maternal or paternal copy of a gene is expressed while the other is silenced.
Friday, July 31, 2015
Beyond Average
Researchers have created new platforms to genetically barcode tens of thousands of cells at a time allowing unprecedented detail to be uncovered when studying whole tissue samples.
Tuesday, May 26, 2015
One Molecule at a Time
The ability to study single molecules provides tangible targets for personalised medicine.
Monday, May 18, 2015
Diabetes’ Genetic Variety
Researchers find nine variants that can greatly increase risk from disease.
Friday, September 19, 2014
Cancer Vaccine Begins Phase I Clinical Trials
Cross-disciplinary team brings novel therapeutic cancer vaccine to human clinical trials.
Wednesday, September 11, 2013
A Marker for Breast Cancer
Research says it soon may be possible to gauge individual risk for disease, and eventually to treat it.
Tuesday, August 13, 2013
Controlling Genes with Light
New technique can rapidly turn genes on and off, helping scientists better understand their function.
Tuesday, July 23, 2013
Developing Cancer Drugs
Researchers find therapeutic potential in ‘undruggable’ target.
Wednesday, June 19, 2013
Coelacanth Genome Similar to that of Fossils
Unexpected insights from a fish with a 300-million-year-old fossil record.
Thursday, April 18, 2013
One Cell is All You Need
Innovative technique can sequence entire genome from single cell.
Monday, January 07, 2013
Researchers at Harvard’s Wyss Institute Engineer Novel DNA Barcode
Researchers at the Wyss Institute for Biologically Inspired Engineering at Harvard University have created a new kind of barcode that could come in an almost limitless array of styles.
Tuesday, September 25, 2012
Scientific News
New Tech Vastly Improves CRISPR/Cas9 Accuracy
A new CRISPR/Cas9 technology developed by scientists at UMass Medical School is precise enough to surgically edit DNA at nearly any genomic location, while avoiding potentially harmful off-target changes typically seen in standard CRISPR gene editing techniques.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Biologists Induce Flatworms to Grow Heads and Brains of Other Species
Findings shed light on role of a new kind of epigenetic signaling in evolution, could yield clues for understanding birth defects and regeneration.
Turning up the Tap on Microbes Leads to Better Protein Patenting
Mining millions of proteins could become faster and easier with a new technique that may also transform the enzyme-catalyst industry, according to University of California, Davis, researchers.
Mathematical Model Forecasts the Path of Breast Cancer
Chances of survival depend on which organs breast cancer tumors colonize first.
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
Tardigrade's Are DNA Master Thieves
Tardigrades, nearly microscopic animals that can survive the harshest of environments, including outer space, hold the record for the animal that has the most foreign DNA.
The Secret Behind the Power of Bacterial Sex
Migration between different communities of bacteria is the key to the type of gene transfer that can lead to the spread of traits such as antibiotic resistance, according to researchers at Oxford University.
Farming’s in Their DNA
Ancient genomes reveal natural selection in action.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos