Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Sequencing of Wheat Genome in Breakthrough for Global Food Security

Published: Tuesday, December 04, 2012
Last Updated: Monday, December 03, 2012
Bookmark and Share
Achievement is expected to increase wheat yields and speed up development of wheat varieties.

U.S. Department of Agriculture (USDA) scientists working as part of an international team have completed a shotgun sequencing of the wheat genome, a paper published in the journal Nature reported.

The achievement is expected to increase wheat yields, help feed the world and speed up development of wheat varieties with enhanced nutritional value.

"By unlocking the genetic secrets of wheat, this study and others like it give us the molecular tools necessary to improve wheat traits and allow our farmers to produce yields sufficient to feed growing populations in the United States and overseas," said Catherine Woteki, USDA's Chief Scientist and Under Secretary for Research, Education and Economics.

Woteki continued, "Genetics provides us with important methods that not only increase yields, but also address the ever-changing threats agriculture faces from natural pests, crop diseases and changing climates."

Olin Anderson and Yong Gu, scientists with USDA's Agricultural Research Service (ARS) based at the agency's Western Regional Research Center in Albany, Calif., played instrumental roles in the sequencing effort, along with Naxin Huo, a post-doctoral researcher working in Gu's laboratory. All three are co-authors of the Nature paper.

ARS is USDA's principal intramural scientific research agency, and the work supports the USDA goal of ensuring global food security.

As the world's largest agricultural research institute, USDA is focused on reducing global hunger by increasing global cooperation and collaboration on research strategies and their implementation.

For example, through the U.S. government's Feed the Future initiative, USDA and the U.S. Agency for International Development (USAID) are coordinating their research portfolio with ongoing work of other donors, multilateral institutions, and government and non-government entities at the country level to effectively improve agricultural productivity, reduce food insecurity and generate economic opportunity.

Grown on more land area than any other commercial crop, wheat is the world's most important staple food, and its improvement has vast implications for global food security.

The work to complete the shotgun sequencing of the wheat genome will help to improve programs on breeding and adaptation in Asia and Sub-Saharan Africa for wheat crops that could be drought tolerant and resistant to weeds, pests and diseases.

ARS is one of nine institutions with researchers who contributed to the study. The lead authors are based in the United Kingdom and were funded by the British-based Biotechnology and Biological Sciences Research Council.

Funding also was provided by USDA's National Institute of Food and Agriculture, or NIFA. NIFA focuses on investing in research, education and extension programs to help solve critical issues impacting people's daily lives.

The study represents the most detailed examination to date of the DNA that makes up the wheat genome, a crop domesticated thousands of years ago.

The wheat genome is five times the size of the human genome, giving it a complexity that makes it difficult to study. The researchers used the whole genome shotgun sequencing approach, which essentially breaks up the genome into smaller, more workable segments for analysis and then pieces them together.

Another international team of scientists is working on a long-term project expected to result in more detailed sequencing results of the wheat genome in the years ahead.

But the results published shed light on wheat's DNA in a way that will help breeders develop hardier varieties by linking genes to key traits, such as disease resistance and drought tolerance.

Wheat evolved from three ancient grasses, and the ARS team, working closely with partners at University of California, Davis, sequenced the genome of one of those three parents, Aegilops tauschii.

That sequencing, funded in part by the National Science Foundation, was instrumental in the study. It allowed researchers to identify the origins of many of the genes found in modern-day wheat, a key step in linking genes to traits and developing markers for use in breeding new varieties.

Wheat growers face numerous challenges each year. Acidity in the soil can make wheat difficult to grow in some areas. Stem rust, a fungal disease, can wipe out entire crops, and a particularly aggressive form of stem rust has developed the ability to knock out genetic resistance in many popular wheat varieties and is causing major losses overseas.

USDA scientists have conducted similar genomic studies that have helped to increase the productivity of dairy operations, enhance cattle breeding and improve on varieties of a number of other crops, including tomatoes, corn and soybean.

In 2010, another ARS team published a paper in Nature detailing the sequencing of Brachypodium distachyon, a model plant used to study wheat, barley and biofuel crops.

Recent international research collaborations have been critical to meet challenges such as combating wheat rust and increasing wheat productivity, fighting aflatoxin contamination in food, and sequencing genomes of important crops.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

USDA Awards $27.6M in Grants to Improve Food Security
The U.S. Department of Agriculture’s (USDA) National Institute of Food and Agriculture (NIFA) today announced more than $27.6 million in funding for projects that will boost food security through improved animal production and health.
Thursday, August 13, 2015
Improving Trout Resistance to a Deadly Disease
A highly sensitive real-time PCR test has been developed to measure F. psychrophilum in fish tissue.
Tuesday, October 07, 2014
Scientific News
Benchtop Automation Trends
Gain a better understanding of current interest in and future deployment of benchtop automated systems.
New Cancer Drug Target Found in Dual-Function Protein
Findings from a study from TSRI have shown that targeting a protein called GlyRS might help to halt cancer growth.
Alzheimer's Genetics Point To New Research Direction
A University of Adelaide analysis of genetic mutations which cause early-onset Alzheimer’s disease suggests a new focus for research into the causes of the disease.
Contagious Cancers Are Spreading in Shellfish
Direct transmission of cancer among some marine animals may be more common than once thought, suggests a new study published in Nature by researchers at Columbia University Medical Center (CUMC).
Contagious Cancers Are Spreading in Shellfish
Direct transmission of cancer among some marine animals may be more common than once thought, suggests a new study published in Nature by researchers at Columbia University Medical Center (CUMC).
Fix for 3-Billion-Year-Old Genetic Error
Researchers at The University of Texas at Austin have developed a fix that allows RNA to accurately proofread for the first time.
Higher Frequency of Huntington's Disease Mutations Discovered
University of Aberdeen study shows that the gene change that causes Huntington's disease is much more common than previously thought.
Revealing the Genetic Causes of Bowel Cancer
A landmark study has given the most detailed picture yet of the genetics of bowel cancer — the UK's fourth most common cancer.
The Epigenetic Influences of Chronic Pain
Researchers at Drexel University College of Medicine are aiming to identify new molecular mechanisms involved in pain.
Fighting Resistant Blood Cancer Cells
Biologists present new findings on chronic myeloid leukemia and possible therapeutic approaches.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!