Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Stanford Launches New Center to Advance 'Information Age of Genomics'

Published: Tuesday, December 04, 2012
Last Updated: Tuesday, December 04, 2012
Bookmark and Share
With a new research center, Stanford scientists from across campus will join a new "information age of genomics." The goal is nothing short of improving human well-being.

In an effort to harness vast amounts of genomic data that can benefit human well-being, Stanford's School of Humanities and Sciences and School of Medicine have launched the Stanford Center for Computational, Evolutionary and Human Genomics.

The center plans to attract faculty and students from Stanford's seven schools to engage in interdisciplinary collaborations that will catalyze discovery in emerging fields of research.

After two decades of sequencing the human genome and other organisms, the field is transitioning into an "information age of genomics," said center Co-Director Marcus Feldman, a biology professor.

Feldman will lead the center with Carlos Bustamante, a professor of genetics in the School of Medicine.

Bustamante, who joined the faculty in 2010, said Stanford is a logical place to support the computational analysis of genomic data. "Stanford sits at an amazing nexus of medicine, science, engineering and the humanities that is incredibly exciting," he said. "If the center is successful, we will catalyze a collaborative environment for understanding how genomics can improve human well-being."

Researchers have access to vast amounts of genomic data, Feldman said, but interpreting even the simplest genomes remains a daunting challenge. Researchers also face ethical and legal problems related to the use of findings. Addressing such challenges is critical if scientists are to effectively translate genomic data into scientific advances that can help promote health, agriculture and biotechnology, he said.

Executive Committee members of the new center include Dmitri Petrov, professor of biology; Noah Rosenberg, associate professor of biology; Chiara Sabatti, associate professor of health research and policy; and Hank Greely, professor of law.

"The field of genome biology is deeply integrative and it will require expertise from diverse fields to make real progress," Petrov said. "We aim to build a hub that will cut across schools and departments to create a new and vibrant community of scholars."

The group aims to take advantage of Stanford's long-standing culture of interdisciplinary collaboration to place the university at the forefront of genomics data research worldwide. "There has never been an obstacle in the way of collaborating at Stanford," said Feldman, a faculty member for more than four decades. "That culture is Stanford's advantage. We need to play to our strengths in large data analysis and scholarly innovation to organize teams of interdisciplinary investigators to address large-scale problems."

The center, which is open to all university faculty and labs, aims to promote interaction and collaboration. Planned activities include:

•    Support for graduate and postdoctoral students.
•    Support for small project grants, including student-initiated research.
•    Computational genomics analysis service to support member labs and faculty, students and staff.
•    Public outreach. During the first year, the center will present programs on "Genomics and Social Systems," "Agricultural, Ecological and Environmental Genomics" and "Medical Genomics."
•    Consulting with academic institutions, industry, government and nonprofit organizations to facilitate collaboration and transfer knowledge.

Center funding and research

Five years of funding for the center has been provided by Richard Saller, dean of the School of Humanities and Sciences; Lloyd Minor, dean of the School of Medicine; Ann Arvin, dean of research; Provost John Etchemendy; and President John Hennessy.

Feldman, the first winner of the Stanford Prize and Research Award in Population Genetics and Society, plans to use the award to support research in the new center, which could help identify risk factors for common diseases.

"We're not able to pick out what are the major genetic contributions to coronary heart disease," he said. "It's still the case that smoking, exercise and diet are much better predictors than genotypes [genetic traits in organisms] for something like this." If statisticians could use computational analysis to understand the interactions of hundreds of genes, he said, scientists could better identify risk factors.

Researchers at the new center will also harness "big data" to analyze how the potential effects of climate change could affect genomic variation in crops, Bustamante said. This knowledge could be used to develop crops using natural genetic variations that will make them less susceptible to atmospheric changes.

"We know about the controversy surrounding genetically modified organisms," he said. "A real alternative is to use genomic information to make very directed changes so you're using naturally occurring variations rather than introducing genes from different organisms."

For example, researchers seeking to cross a drought-tolerant crop with a related high-yielding crop can now use genetic markers to make specific changes. "It's almost like a surgical excision where you take this little bit of DNA and put it onto a different background," Bustamante said. "This idea has been around for a decade but we're only now able to use it, thanks to advances in computational analysis."

Collaborating with the humanities and social sciences

According to Feldman and Bustamante, expanding interaction with the humanities and social sciences is a motivating factor in establishing the center. "We really can't make effective interpretations unless we take the history of human behavior into account," Feldman said. "That's why it's not just mathematicians and geneticists working together at the center, but also archaeologists, anthropologists and historians."

Feldman views the study of human genomics as "the genes, the bones and the languages." The bones are the fossil record, revealing information about paths of migration, where people settled and what tools they used. Studying variations in linguistics also helps explain how groups separated. If people could not communicate, he said, gene flow diminished.

Executive Committee member Rosenberg said new partnerships linking the sciences, social sciences and humanities are already under way. This fall, the mathematical geneticist worked with the Taube Center for Jewish Studies to organize a public seminar series on the genetics of Jewish populations. It featured humanists and social scientists as speakers, as well as geneticists and physicians. "We foresee a wide variety of opportunities to interact with scholars in the humanities and social sciences," he says.

Bustamante, a member of the Center for Comparative Studies in Race and Ethnicity, adds that scientists benefit when they incorporate an understanding of the past into interpreting patterns of genetic variation.

Earlier this year, Bustamante was part of a team that sequenced the genome of a 5,300-year-old mummy discovered in the Italian Alps in 1991. Genetically, the mummy's closest modern relatives live on the islands of Sardinia and Corsica. "How do we understand that?" he asks.

"The genes are only going to take us so far. Now we need to understand the history of colonization, archaeology, anthropology and the historical record in a way that geneticists usually don't. That, to me, is one of most rewarding aspects of this effort."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Paper Published Based on RNA Game
Video-gamers have co-authored a paper describing a new set of rules for determining the difficulty of designing structures composed of RNA molecules.
Thursday, February 18, 2016
Flexible Gene Expression May Regulate Social Status
Scientists show how the selective expression of genes through epigenetics can regulate the social status of African cichlid fish.
Monday, January 11, 2016
U.S. Needs a New Approach for Governance of Risky Research
The United States needs better oversight of risky biological research to reduce the likelihood of a bioengineered super virus escaping from the lab or being deliberately unleashed, according three Stanford scholars.
Monday, January 04, 2016
Accelerating Protein Evolution
A new tool enables researchers to test millions of mutated proteins in a matter of hours or days, speeding the search for new medicines, industrial enzymes and biosensors.
Monday, December 14, 2015
Gene Linked to Heart Failure
Researchers have identified a previously unknown association between heart function and the narcolepsy-linked orexin receptor pathway, a finding that could provide a promising direction for treatment research.
Wednesday, December 02, 2015
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Thursday, November 26, 2015
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
Wednesday, November 25, 2015
Combination Drug Therapy Shrinks Pancreatic Tumors In Mice
Two drugs that affect the structure and function of DNA have been found to block the growth of pancreatic tumor cells in mice, researchers hope the drugs can soon be tested in humans with the disease.
Thursday, September 24, 2015
Key Mechanism in Gene Expression Discovered
RNA polymerase II makes life possible by expressing genes. Now, a team of Stanford biologists, chemists and applied physicists has observed it at work in real time.
Thursday, September 17, 2015
Scientists Home In On Origin Of Human, Chimpanzee Facial Differences
A study of species-specific regulation of gene expression in chimps and humans has identified regions important in human facial development and variation.
Monday, September 14, 2015
Identifying Defective Heart Genes
A new technique could eventually enable doctors to diagnose genetic heart diseases by rapidly scanning more than 85 genes known to cause cardiac anomalies.
Thursday, August 13, 2015
DNA Damage Seen in Patients Undergoing CT Scanning
Along with the burgeoning use of advanced medical imaging tests over the past decade have come rising public health concerns about possible links between low-dose radiation and cancer.
Monday, July 27, 2015
Genetic Signature Enables Early, Accurate Sepsis Diagnosis
Systemic inflammation after injuries or surgery can dramatically alter the activity of thousands of genes, but a new study shows that changes in just 11 of them are enough to detect the presence or absence of accompanying infection.
Monday, May 18, 2015
Existing Drug May Treat Deadliest Childhood Brain Tumor
For the first time, scientists have identified an existing drug that slows the growth of the deadliest childhood brain tumor.
Friday, May 08, 2015
Foreign Antibodies Mobilize Immune System to Fight Cancer
A mouse’s T cells can be primed to attack and eliminate a malignant tumor by injecting antibodies from another mouse with resistance to the tumor, as well as by activating certain signaling cells, a study has found.
Thursday, May 07, 2015
Scientific News
World’s Largest Coral Gene Database
‘Genetic toolkit’ will help shed light on which species survive climate change.
Early Genetic Changes in Premalignant Colorectal Tissue Identified
Findings point to drivers of early cancer development, targets for cancer prevention therapies.
Scientists Find Evidence That Cancer Can Arise Changes
Researchers at Rockefeller University have found a mutation that affects the proteins that package DNA without changing the DNA itself can cause a rare form of cancer.
Modified Microalgae Converts Sunlight into Valuable Medicine
A special type of microalgae can soon produce valuable chemicals such as cancer treatment drugs and much more just by harnessing energy from the sun.
Breakthrough Approach to Breast Cancer Treatment
Scripps scientists have designed a drug candidate that decreases growth of breast cancer cells.
Loss Of Y Chromosome Increases Risk Of Alzheimer’s
Men with blood cells that do not carry the Y chromosome are at greater risk of being diagnosed with Alzheimer’s disease. This is in addition to an increased risk of death from other causes, including many cancers. These new findings by researchers at Uppsala University could lead to a simple test to identify those at risk of developing Alzheimer’s disease.
A Guide to CRISPR Gene Activation
A comparison of synthetic gene-activating Cas9 proteins can help guide research and development of therapeutic approaches.
Gene That Lowers Heart Attack Risk Identified
Individuals with a rare twelve-letter deletion from a gene on chromosome 17 have significantly reduced non-HDL cholesterol levels and a 35% lower than average risk of heart disease.
Testing Non-Breast/Ovarian Cancer Genes
Researchers have found that expanding gene panel beyond breast/ovarian cancer genes in these patients does not add any clinical benefit. Instead, testing has produced more questions than answers.
Myeloid-Derived Suppressor Cells Play Role in Tumor Growth
Researchers at Baylor College of Medicine have reported a new mechanism that helps cancer cells engage myeloid-derived suppressor cells.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!