Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Sanford-Burnham and Intrexon Establish Collaboration

Published: Friday, January 04, 2013
Last Updated: Friday, January 04, 2013
Bookmark and Share
Combines Sanford-Burnham Medical Research Institute's renowned scientific team and Intrexon's proprietary discovery platforms to accelerate human induced pluripotent stem cell research.

Sanford-Burnham Medical Research Institute and Intrexon Corporation have announced a new collaboration to accelerate stem cell research.

Under the agreement, Sanford-Burnham will gain access to sophisticated proprietary cellular selection and gene regulation technologies that are not currently on the market, including Intrexon's Laser-Enabled Analysis and Processing (LEAP™) instrument and RheoSwitch Therapeutic System® (RTS®).

As part of the agreement, Intrexon may obtain commercial and intellectual property rights resulting from technological advances made under the collaboration.

"I'm looking forward to merging and melding our expertise," said Evan Y. Snyder, M.D., Ph.D., professor and director of Sanford-Burnham's Stem Cell Research Center and Stem Cell and Regenerative Biology Program.

Snyder continued, "We'll bring our iPSC and gene therapy expertise to the table. Likewise, our colleagues at Intrexon will share their knowledge of how best to use the technologies. We envision we'll be meeting with them frequently and sharing insights to further advance the platforms for stem cell applications."

Sanford-Burnham is currently building the world's largest collection of human iPSCs generated from individual patients and healthy volunteers.

The Stem Cell Research Center's expertise and resources are available to all Sanford-Burnham scientists, as well as other researchers at nonprofit and for-profit research organizations around the world.

LEAP™ for induced pluripotent stem cells

The LEAP™ instrument is an automated system that provides high-throughput cell imaging coupled with versatile laser-based cell processing. The instrument's applications include rapid and accurate in situ purification of adherent cells and cell colonies, features that are particularly useful when working with complex human iPSC cultures.

The LEAP™ instrument enables scientists in Sanford-Burnham's Stem Cell Research Center to improve and accelerate their methods for generating human iPSCs and their differentiated progeny, which are used in the study of a variety of diseases. iPSCs are stem cells derived from adult cells-a research advance that garnered the 2012 Nobel Prize in Physiology or Medicine.

"Intrexon's LEAP™ instrument will allow us to isolate high-quality human iPSCs while eliminating non- or partially-reprogrammed cells or other undesirable cell types in the culture-a laborious process that previously took a trained technician a lot of time," explained Yang Liu, Ph.D., manager of Sanford-Burnham's Stem Cell Research Center. "Together with other automated equipment available in our facility, the new capabilities will free up valuable resources, allowing us to provide an even greater level of service to our internal and external users."

"We are big believers in iPSCs and their potential for use in new therapeutic modalities," said Fred Koller, Ph.D., vice president and executive director of the Intrexon Institute for Biomolecular Research. "It's exciting for us to use our technology collaboratively with Sanford-Burnham's team of premier scientists. We look forward to applying LEAP™, RTS® and other Intrexon tools in this stem cell research, and are proud to assist in the diverse medical advancements enabled by this collaborative effort with Sanford-Burnham."

Controlling gene expression with RTS®

RTS® technology, a proprietary biological "switch" that enables inducible controlled gene expression by administering an activator ligand, will give Sanford-Burnham scientists a new method to regulate when certain genes are turned on or off in cells. The system also provides more accurate delivery of new therapeutic candidates to specific tissues in animal models.

"We're interested in the RTS® technology because it will help us to turn genes on or off in stem cells that have been transplanted. For example, it can be used for therapeutic protein expression in stem cells that home to and help eradicate brain tumors," said Snyder.

"New cell-based therapies may someday result from our LEAP™ and RTS® technologies," Koller said. "Working with leaders in the field of academic stem cell research will leverage both parties' technologies to get there faster."


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Genetic Mutation Increases Risk of Parkinson’s Disease from Pesticides
A team of researchers has brought new clarity to the picture of how gene-environmental interactions can kill nerve cells that make dopamine.
Thursday, December 05, 2013
Scientific News
RNAi Screening Trends
Understand current trends and learn which application areas are expected to gain in popularity over the next few years.
New Weapon in the Fight Against Blood Cancer
This strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
Toxin from Salmonid Fish has Potential to Treat Cancer
Researchers from the University of Freiburg decode molecular mechanism of fish pathogen.
Study Finds Non-Genetic Cancer Mechanism
Cancer can be caused solely by protein imbalances within cells, a study of ovarian cancer has found.
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Tracking Breast Cancer Before it Grows
A team of scientists led by University of Saskatchewan researcher Saroj Kumar is using cutting-edge Canadian Light Source techniques to screen and treat breast cancer at its earliest changes.
DNA Damage Seen in Patients Undergoing CT Scanning
Along with the burgeoning use of advanced medical imaging tests over the past decade have come rising public health concerns about possible links between low-dose radiation and cancer.
The Mystery of the Instant Noodle Chromosomes
Researchers from the Lomonosov Moscow State University evaluated the benefits of placing the DNA on the principle of spaghetti.
Oxitec ‘Self-Limiting Gene’ Offers Hope for Controlling Invasive Moth
A new pesticide-free and environmentally-friendly way to control insect pests has moved ahead with the publication of results showing that Oxitec diamondback moths (DBM) with a ‘self-limiting gene’ can dramatically reduce populations of DBM.
Web App Helps Researchers Explore Cancer Genetics
Brown University computer scientists have developed a new interactive tool to help researchers and clinicians explore the genetic underpinnings of cancer.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!