Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Spread of Cancer Cells may be Slowed by Targeting of Protein

Published: Tuesday, January 08, 2013
Last Updated: Tuesday, January 08, 2013
Bookmark and Share
The spread of cancer cells may be slowed by targeting the protein km23-1, according to researchers at Penn State College of Medicine.

A motor protein that transports cargo within the cell, km23-1 is also involved in the movement or migration of cells. Migration is necessary for cancer to spread, so understanding this cell movement is important for development of better cancer treatments.

Kathleen Mulder, Ph.D., professor, biochemistry and molecular biology, looked for partner proteins that bind to and cooperate with km23-1 during cell movement, which turned out to include factors that can control proteins actin and RhoA.

“Cell migration is an important aspect of the process of a tumor spreading,” Mulder said. “Changes in this process transform tumor cells from local, noninvasive, confined cells to the migrating, metastatic cancer cells.”

Cells move through the body using the protein actin, which forms the structural frame of the cell, called the cytoskeleton. The actin creates a protrusion in the cell membrane by forming strands of thread-like fibers on the leading edge of the cell, pushing the cell forward. Several identified proteins regulate the reorganization of the cytoskeleton and are more active in several types of cancers.

Overexpression of km23-1 increases actin fiber formation, whereas when km23-1 is diminished, RhoA activity decreases. RhoA is known to be an important switch, activating processes in migration.

“By knowing that RhoA activity was decreased when km23-1 was reduced, we infer that km23-1 is needed for the regulation of these switches and has a role in cell movement,” Mulder said.

To test this in the lab, km23-1 was reduced in a sample of human colon cancer cells. When km23-1 was diminished, cancer cells migrated less. More research needs to be done, but km23-1 may be a promising target for anti-metastatic drugs and cancer therapies to slow the spread of the disease.

“By inhibiting km23-1, you inhibit events that contribute to the cells spreading to other parts of the body,” Mulder said.

Results were reported in Biochemical and Biophysical Research Communications.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Breast Cancer Cells Found To Switch Molecular Characteristics
Spontaneous interconversion between HER2-positive and HER2-negative states could contribute to progression, treatment resistance in breast cancer.
Some Breast Cancer Patients With Low Genetic Risk Could Skip Chemotherapy
Genetic test can help predict survival and guide treatment options.
Lose Weight, Escape the Eight: Weight-Based Cancer Risk
IARC has identified eight additional cancer sites linked to overweight and obesity.
Coffee Consumption Linked to Genes
Researchers have identified a gene that influences coffee consumption. The gene is thought to relate to caffeine breakdown.
Emerging Model of Cancer
Cancer acts cooperatively, making individual decisions but acting in unison; this insight is being used to create a computer model of cancer.
Biological Barcodes Using CRISPR
Using genome editing tools, researchers are getting closer to understand differentiation of various cell types during development.
Controlling DNA Repair
Scientists discover that DNA repair outcomes following CRISPR-Cas9 cleaving are non-random and can be harnessed to produce desired effects.
Demonstrating LNP Delivery of CRISPR Components
Intellia has presented data demonstrating in vivo gene editing ising liquid nanoparticles (LNPs) to deliver CRISPR/Cas9.
Gene Therapy Via Ultrasound
Research into a gene therapy approach called sonoporation could help combat heart disease and cancer.
Creating Embryos with 'Heteroplasmy'
New discovery in genetic research could lead to treatments for mitochondrial diseases.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!