Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

High-Throughput Sequencing Shows Potentially Hundreds of Gene Mutations Related To Autism

Published: Wednesday, January 09, 2013
Last Updated: Wednesday, January 09, 2013
Bookmark and Share
Autism Sequencing Consortium discovers six new drug targets through large-scale studies.

Genomic technology has revolutionized gene discovery and disease understanding in autism, according to an article published in the journal Neuron.

The paper highlights the impact of a genomic technology called high-throughput sequencing (HTS) in discovering numerous new genes that are associated with autism spectrum disorder (ASD).

"These new discoveries using HTS confirm that the genetic origins of autism are far more complex than previously believed," said Joseph D. Buxbaum, PhD, Director of the Seaver Autism Center at the Icahn School of Medicine at Mount Sinai, and lead author of the article in Neuron.

Dr. Buxbaum is co-founder and co-director of the Autism Sequencing Consortium (ASC), a large multisite collaboration which is a model for future research. The co-authors of the article are Mark J. Daly, Broad Institute and Harvard Medical School; Bernie Devlin, University of Pittsburgh; Thomas Lehner, National Institute of Mental Health; Kathryn Roeder, Carnegie-Mellon University; Matthew W. State (co-director), Yale University, and the ASC.

HTS is a revolutionary new technology that allows scientists to obtain the sequence of all 22,000 human genes and the entire human genome in one experiment. This provides an unparalleled look at an individual’s genetic makeup and allows for gene discovery and for genetic testing.

"HTS shows us that there are not just a few mutations, but potentially hundreds of mutations that are linked to autism," said Dr. Buxbaum."By identifying the many genetic roots of this disorder, we can better understand its biology, which in turn will allow us to develop more tailored treatments for individuals.It is a transformative time for genetic research in autism."

Ground-breaking, highly reproducible discoveries identified through HTS described in the article include:
•    the "staggering degree" of genetic heterogeneity in autism, which means that many individuals with autism do not share similar gene mutations;
•    the identification of an increasing number of specific genes and chromosomal intervals conferring risk;
•    the important emerging role in autism of both rare and "de novo germline mutations," or mutations developed in the sperm or ovaries of parents and passed on to children; and
•    gene loci associated with autism that overlap with gene loci associated with other illnesses, such as intellectual disability and epilepsy.

Dr. Buxbaum estimates that researchers have already identified 50–100 specific genes and 20-40 chromosomal loci conferring risk. The researchers predict, based on the first studies in 1,000 families, that there are many hundreds of undiscovered ASD associated genes. This surge in the number of genes related to autism revealed by HTS marks a coming of age for high-throughput sequencing, the authors believe. The path forward for new discoveries, they write, is via one of two HTS processes: whole exome sequencing (WES) or whole genome sequencing (WGS) in large cohorts. The exome is the small fraction of the genome that codes for proteins.

The article spotlights the successful work of the ASC, founded in 2010, as a model to bring to fruition an explosive gene discovery process.The ASC member sites, using WES technology also available at Mount Sinai, recently discovered six de novo mutations in autism patients: CHD8, DYRK1A, GRIN2B, KATNAL2, POGZ and SCN2A.These six genes may be targets for future treatments. Some of these discoveries were accomplished rapidly because the Consortium’s 25 research groups, located around the world, combined their data and shared it before publication. As a result, they conducted four large studies using 1,000 families.

There are approximately 8,000 to 10,000 families currently available to the Consortium to study autism, but the article suggests many more are needed to speed up gene discoveries. Also needed for the future is increased collaboration among research teams and the integration of autism studies with studies of other psychiatric disorders. In addition, high-capacity supercomputers are needed to analyze the data. The ASC was designed to address these issues, and Mount Sinai has created Minerva, one of the largest academic supercomputers in the world, to help with these goals.

The research conducted at Mount Sinai was supported by grants from the National Institutes of Health and the Seaver Foundation.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Resilience Project Identifies Rare Unaffected Individuals
Researchers from Mount Sinai and Sage Bionetworks report analysis of nearly 600,000 genomes for resilience project.
Tuesday, April 12, 2016
More Accurate and Comprehensive Whole Genome Assembly
Scientists from the Icahn School of Medicine at Mount Sinai have developed a new approach to build nearly complete genomes by combining high-throughput DNA sequencing with genome mapping.
Tuesday, June 30, 2015
Cell Powerhouse Sequencing Technology Provides Deeper Look at Inherited Disease Risk
A new sequencing technique may provide a clearer picture of how genes in mitochondria, the “powerhouses” that turn sugar into energy in human cells, shape each person’s inherited risk for diabetes, heart disease and cancer.
Friday, April 03, 2015
Master Switch Found to Stop Tumor Cell Growth by Inducing Dormancy
Commonly used anticancer drugs may help to make tumor cells dormant.
Tuesday, February 03, 2015
Mount Sinai Scientists and International Team Shed New Light on Schizophrenia
Genes and pathways identified could inform new approaches to treatment and address acute need for drug development for this disorder.
Saturday, July 26, 2014
Researchers Identify Protein That Keeps Blood Stem Cells Healthy as They Age
Early findings may help to reduce risk of age-related blood cancers.
Thursday, June 12, 2014
Scientific News
First Large-Scale Proteogenomic Study of Breast Cancer
The study offers understanding of potential therapeutic targets.
Fungi – A Promising Source Of Chemical Diversity
Moulds and plants share similar ways in alkaloid biosynthesis .
Great Migration and African-American genomic diversity
Study examines genetic data to analyze regional differences in ancestry.
Faster, More Efficient CRISPR Editing
UC Berkeley scientists have developed a quicker and more efficient method to alter the genes of mice with CRISPR-Cas9, simplifying a procedure growing in popularity because of the ease of using the new gene-editing tool.
New Tool Could Change How Infectious Diseases Are Diagnosed
Scientists at the University of Utah School of Medicine, ARUP Laboratories, and IDbyDNA, Inc., have developed ultra-fast, meta-genomics analysis software called Taxonomer that dramatically improves the accuracy and speed of pathogen detection.
Insight into Bacterial Resilience and Antibiotic Targets
Variant of CRISPR technology paired with computerized imaging reveals essential gene networks in bacteria.
Illuminating Hidden Gene Regulators
New super-resolution technique visualizes important role of short-lived enzyme clusters.
Genes That Increase Children's Risk Of Blood Infection Identified
A team led by Oxford University has identified genes that make certain children more susceptible to invasive bacterial infections by performing a large genome-wide association study in African children.
Poverty Marks a Gene, Predicting Depression
New study of high-risk teens reveals a biological pathway for depression.
World’s Largest Coral Gene Database
‘Genetic toolkit’ will help shed light on which species survive climate change.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!