" "
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Scientists Find a New Way to Boost Common Cancer Drugs

Published: Wednesday, January 16, 2013
Last Updated: Wednesday, January 16, 2013
Bookmark and Share
Blocking a particular pathway in the cell makes it easier for drugs to annihilate tumors.

Shutting down a specific pathway in cancer cells appears to improve the ability of common drugs to wipe those cells out, according to new research from scientists at Fox Chase Cancer Center, published in the January issue of Cancer Discovery.

"Ideally, this research will eventually enable scientists to find drugs that disrupt this pathway and boost the impact of current therapies," says Igor Astsaturov, MD, PhD, Attending Physician in the Department of Medical Oncology at Fox Chase. "That's the long-term plan."

The new approach appears to enhance the tumor-killing ability of a commonly prescribed class of drugs that includes cetuximab (Erbitux), used to treat colorectal and head and neck cancers. These drugs work by blocking the activity of the epidermal growth factor receptor (EGFR), which sits on the cell surface and senses cues from the environment, telling cancer cells to grow and divide, says Astsaturov. "The whole mantra of modern day oncology is to suppress these inputs."

Although EGFR inhibitors succeed in killing cancer cells, some malignant cells still find ways to evade the drug, and become resistant to treatment. Consequently, many researchers are actively looking for ways to kill these surviving cancer cells, annihilating tumors completely.

In 2010, Astsaturov and his colleagues identified a pathway in the cell that, when blocked, completely suppressed EGFR activity. Interestingly, the pathway consists of a series of enzymes that, when working in concert, synthesize new molecules of cholesterol, an essential component of the cell wall. This pathway is particularly important to cancer cells, which are constantly dividing and therefore need to produce more cholesterol for the new cells.

Working with cancer cells in the lab, the researchers inactivated a key gene in the cholesterol synthesis pathway, and found the cells became more vulnerable to treatment with cetuximab. The same was true in mice that lacked this particular pathway, says Astsaturov. "Most tumors are only moderately sensitive to inhibitors of EGFR, but when these tumors lack an essential gene in the cholesterol pathway, they become exquisitely sensitive to the anti-EGFR drugs," he says. "The cancers literally melt away in mice."

The researchers then removed one of the cholesterol genes from the mouse genome, and saw that mice developed patchy, scaly skin. When they biopsied this affected skin, they saw no activity of the EGFR protein, reaffirming that shutting down cholesterol synthesis interrupts EGFR. They also observed the same pattern in normal cell lines.

When the cholesterol biosynthesis pathway is blocked, explains Astsaturov, the normal chain of events that creates a cholesterol molecule is interrupted, and cells accumulate intermediate products of cholesterol that block the normal movement of substances around the cell. This cellular traffic jam makes it difficult for the cell to transport important components, such as EGFR, which has to move between the inside of the cell and its surface to function properly. "If you disrupt this traffic, the cancer cells don't survive."

Eventually, says Astsaturov, researchers can design drugs or look for existing ones that block this cholesterol synthesis pathway. For now, his lab is trying to uncover more details of how the pathway works, the role of each protein that is involved—and whether if, by blocking a protein, they can wipe out tumors in humans that evade current therapies. "These proteins represent targets for additional drugs, which could be combined with EGFR inhibitors," he says.

Astsaturov's co-authors include Erica A. Golemis, Anna Sukhanova, Andrey Gorin, Ilya G. Serebriiskii, Linara Gabitova, Hui Zheng, Diana Restifo, Tetyana Bagnyukova, Hanqing Liu, Anna Nikonova, Gregory P. Adams, Yan Zhou, Ranee Mehra, Barbara Burtness, Kathy Q. Cai, Andres Klein-Szanto, and Brian L. Egleston, Fox Chase; David Cunningham and Gail E. Herman, The Research Institute at Nationwide Children’s Hospital and the Department of Pediatrics; Lisa E. Kratz, Richard I. Kelley, The Ohio State University; and Louis M. Weiner, Lombardi Comprehensive Cancer Center.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Fox Chase Offers Advanced Cancer Patients a Blueprint of Their Cancer Genes
Blueprint could help guide treatment for patients who have exhausted all other options.
Wednesday, January 09, 2013
Researchers Develop a New Cell and Animal Model of Inflammatory Breast Cancer
The new model, developed by researchers at the Fox Chase Cancer Center, may provide scientists with a better understanding of the disease and help with developing effective intervention.
Tuesday, April 10, 2012
Fox Chase Researchers Uncover One Force behind the MYC Oncogene in Many Cancers
Researchers discover how embryonic gene, DLX5, may cause cancers in adults.
Monday, August 03, 2009
Inverted DNA Turns Quiet Developmental Gene into a Potent Driver of T-Cell Lymphoma
A gene crucial for embryonic development can quickly become a potent cancer promoter in adult mice after a genetic misalignment, according to researchers.
Friday, February 29, 2008
Scientific News
Common Cell Transformed into Master Heart Cell
By genetically reprogramming the most common type of cell in mammalian connective tissue, researchers at the University of Wisconsin—Madison have generated master heart cells — primitive progenitors that form the developing heart.
Genetic Mutation that Prevents Diabetes Complications
The most significant complications of diabetes include diabetic retinal disease, or retinopathy, and diabetic kidney disease, or nephropathy. Both involve damaged capillaries.
Could the Food we Eat Affect Our Genes?
Almost all of our genes may be influenced by the food we eat, according to new research.
Improving Regenerative Medicine
Lab-created stem cells may lack key characteristics, UCLA research finds.
Tick Genome Reveals Secrets of a Successful Bloodsucker
NIH has announced that decipher the genome of the blacklegged tick which could lead to new tick control methods.
"Dark Side" of the Transcriptome
New approach to quantifying gene "read-outs" reveals important variations in protein synthesis and has implications for understanding neurodegenerative diseases.
Individuals' Medical Histories Predicted by their Noncoding Genomes
Researchers have found that analyzing mutations in regions of the genome that control genes can predict medical conditions such as hypertension, narcolepsy and heart problems.
New Source of Mutations in Cancer
Recently, a new mutation signature found in cancer cells was suspected to have been created by a family of enzymes found in human cells called the APOBEC3 family.
Advancing Synthetic Biology
Living systems rely on a dizzying variety of chemical reactions essential to development and survival. Most of these involve a specialized class of protein molecules — the enzymes.
Biosensors on Demand
New strategy results in custom "designer proteins" for sensing a variety of molecules.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!