Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Scientists Find Gene that Causes Drug Resistance in Cancer

Published: Wednesday, January 16, 2013
Last Updated: Wednesday, January 16, 2013
Bookmark and Share
The discovery is a first step in creating new, effective therapeutic treatments for sufferers of aggressive cancers.

“There are not a lot of options for cancer patients with diseases such as myeloma,” said BYU biology professor David Bearss, a coauthor on the study published Jan. 14 in the journal Cancer Cell. “Myeloma is not only an extremely painful cancer, but it is also a disease that is resistant to treatment.”

Multiple myeloma is a cancer of plasma cells that exists exclusively in the bone. Over time the cancer cells take over bone marrow and destroy its function. This results in major health problems, including failure of the immune system, loss of kidney function, a drop in red blood cell count and large soft spots or holes that form in bones. These holes lead to painful fractures throughout the body, from the skull to hips to the spine.

Compounding that pain for patients is that myeloma cells quickly become resistant to chemotherapy and other drugs, resulting in a short life expectancy for those diagnosed. Over the last few years lead researchers Fenghuang (Frank) Zhan and Guido Tricot, along with Bearss, have been trying to figure out how the disease develops drug resistance.

For the Cancer Cell study, the team carried out a genomic analysis of the biopsied cells of 19 myeloma patients, taken from different stages of their cancer development. They wanted to see what was happening on the genetic level as the disease progressed.

They found that patients with the most aggressive forms of myeloma, and the patients with the poorest drug response, were those who had a high expression of the gene NEK2. That finding led the team to start going after the gene in the lab to see what would happen.

“Silencing NEK2 in cancer cells potently decreased drug resistance, induced cell-cycle arrest, cell death, and inhibition of cancer cell growth in vitro and in vivo," said Zhan, professor of internal medicine at University of Iowa’s Carver College of Medicine.

Added Bearss: “We were able to show that if we inhibit NEK2, then we can actually restore sensitivity to drugs that we use right now.”

The research results also indicate that NEK2 can be used in diagnostic testing.

“We’ve found that this gene is not just a predictor of poor therapy response in myeloma, but is a predictor to poor response in other cancers, such as breast cancer, lung cancer and other major tumor types,” Bearss said. “A big take home from this study is that we could potentially use NEK2 for early screening of patients so we could treat patients with higher levels more aggressively.”

Bearss and his BYU undergraduate student team are now working toward the development of drugs that specifically target NEK2. Their hope is to develop a compound that is minimally toxic to normal cells while having a high selectivity to cancer cells.

The Iowa-BYU research team is currently in the third year of a five-year National Institute of Health grant. The goal is to be ready to take newly formed compounds into human studies by the end of the grant period.

"This study shows convincingly that genomic changes over time are culprit in more aggressive cancer behavior,” said Dr. Rafael Fonseca, Chair of the Department of Medicine at Mayo Clinic in Arizona, who was not involved in the study. “It is likely that for cancers the major risk factors for poor prognosis are not the specific cancer genetic changes, but rather the ability of any given cancer to change, mutate and evolve."

A good portion of Professor Bearss’ contribution to this research study occurred while he was Co-Director of the Center for Investigational Therapeutics and an associate professor of oncology at the University of Utah’s Huntsman Institute of Cancer. Collaborators Zhan and Tricot were also both formerly at the Huntsman Cancer Institute.

Dr. Tricot currently serves as the director of Holden Comprehensive Cancer Center’s Bone Marrow Transplant and Myeloma Program at University of Iowa Hospitals and Clinics.

Bearss joined BYU’s Department of Physiology and Developmental Biology in the fall of 2012, after three years as a professor at the Huntsman Cancer Institute.

Dr. Bearss also served on the faculty of the University of Arizona and has founded and led numerous pharmaceutical startup companies during his career.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
Chromosomal Chaos
Penn study forms basis for future precision medicine approaches for Sezary syndrome
Shaking Up the Foundations of Epigenetics
Researchers at the Centre for Genomic Regulation (CRG) and the University of Barcelona (UB) published a study that challenges some of the current beliefs about epigenetics.
Genetic Defences of Bacteria Don’t Aid Antibiotic Resistance
Genetic responses to the stresses caused by antibiotics don’t help bacteria to evolve a resistance to the medications, according to a new study by Oxford University researchers.
Tolerant Immune System Increases Cancer Risk
Researchers have found that individuals with high immunoCRIT ratios may have an increased risk of developing certain cancers.
Developing a Gel that Mimics Human Breast for Cancer Research
Scientists at the Universities of Manchester and Nottingham have been funded to develop a gel that will match many of the biological structures of human breast tissue, to advance cancer research and reduce animal testing.
Lung Repair and Regeneration Gene Discovered
New role for hedgehog gene offers better understanding of lung disease.
3 Ways Viruses Have Changed Science for the Better
Viruses are really good at what they do, and we’ve been able to harness their skills to learn about – and potentially improve – human health in several ways.
Mixed Up Cell Transportation Key Piece of ALS and Dementia Puzzle
Researchers from the University of Toronto are one step closer to solving this incredibly complex puzzle, offering hope for treatment.
New Gene Therapy for Vision Loss From a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Five New Genetic Variants Linked to Brain Cancer Identified
The biggest ever study of DNA from people with glioma – the most common form of brain cancer – has discovered five new genetic variants associated with the disease.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos